Abstract
It is shown that the linear stability coincides with the thermodynamic stability in the case of stress tensor evolution for simple dense fluids even if the constitutive (evolution) equation for the stress tensor is nolinear. The domain of coincidence can be defined in the space of parameters appearing in the constitutive equation and we find the domain is confined in an elliptical cone in a three-dimensional parameter space. The corresponding state theory in rheology of simple dense fluids is also further examined. The validity of the idea is strengthened by the examination.