DOI QR코드

DOI QR Code

On Stability of the Steady State, Thermodynamic Stabililty and Corresponding States in Rheology of Dense Simple Fluids$^\dag$

  • Published : 1986.06.20

Abstract

It is shown that the linear stability coincides with the thermodynamic stability in the case of stress tensor evolution for simple dense fluids even if the constitutive (evolution) equation for the stress tensor is nolinear. The domain of coincidence can be defined in the space of parameters appearing in the constitutive equation and we find the domain is confined in an elliptical cone in a three-dimensional parameter space. The corresponding state theory in rheology of simple dense fluids is also further examined. The validity of the idea is strengthened by the examination.

Keywords

References

  1. Rheology v.IV F.R. Erlich
  2. Nonlinear Fluid behavior J. M.J. Hanley(ed.)
  3. J. non-Newtonian Fluid Mech. The Oldroyd memorial issue
  4. Dynamics of Polymeric Liquids v.II R.B. Bird;O. Hassager;R.C. Armstrong;C.F. Curtiss
  5. Phys. Rev. v.A 11 W.T. Ashurst;W.G. Hoover
  6. Phys. Rev. Lett. v.52 J. Erpenbeck
  7. J. Chem. Phys. v.79 B.C. Eu
  8. J. Chem. Phys. v.81 B.C. Eu;Y.G. Ohr
  9. Phys. Lett. v.A90 S. Hess
  10. Ann. Phys. (N.Y.) v.140 B.C. Eu
  11. Ann. Phys. (N.Y.) v.118 B.C. Eu
  12. J. Chem. Phys. v.73 B.C. Eu
  13. Nonlinear Oscillations N. Minorski
  14. J. Polymer Sci.: Polymer Phys. Ed. v.18 G. Kiss;R.S. Porter
  15. J. Rheol. v.25 K.F. Wissbrun
  16. J. Rheol. v.26 S.G. Mason
  17. Mechanics of Continua A.C. Eringen
  18. J. Chem. Phys. v.82 B.C. Eu
  19. Introduction to Mechanics of Continua W. Prager
  20. Theorie des Matices v.2 R.F. Gantmacher
  21. Inequalities E.F. Beckenbach;R. Bellman
  22. Trans. Soc. Rheol v.11 J.D. Huppler;E. Ashare;L.A. Holmes
  23. Trans. Soc. Rheol. v.18 E.B. Christiansen;W.R. Leppard
  24. J. Rheol. v.26 M. Keentok;R.I. Tanner