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Abstract

In this paper, a new method of circuit equation formulation called “Reduced Modified Nodal
Approach” (RMNA) is proposed, in which node voltages and controlling currents are adopted
as the circuit variables. The circuit equations of the RMNA are formulated directly and
systematically from a given circuit through three types of pivotings. In the RMNA matrix, its
size is equal to the number of nodes in the circuit augmented by the short-circuit branches and
zero diagonal entries are avoided. The RMNA retains the simplicity and other advantages of
the nodal approach and of the MNA, while removing their difficulties.

L. Introduction are required as the circuit variables. This is

done by introducing the currents through these

The modified nodal approach (MNA) [1] branches as additional circuit variables and the
has been widely used for formulating circuit corresponding branch relations as additional
equations in many computer-aided circuit circuit equations, As a result, the total number
analysis and design programs. This approach of wvariables is increased and zero diagonal
is based on the classical nodal approach, but entries may appear in the resultant MNA
includes circuit elements like voltage sources matrix, which complicates the computer
(VS’s) andjor other elements whose currents implementation and increases the execution

time of the MNA.

Several methods to overcome these diffi-
culties have been proposed in [1-4] Among
(Dept. of Elec. Eng., KAIST) these, [1] proposes interchange of rows in
2 F 19854 10 12H order to avoid the zero diagonal entries, while
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the method in [2] involves partitioning and
ordering the circuit variables. - However, they
do not consider reduction of circuit variables.
In contrast, [3] uses the concept of component
cutsets for special circuits such as switched
capacitor circuits to reduce the number of
circuit variables. In [4], the two-graph
modified nodal formulation is developed by
the use of separate voltage and current graphs
to eliminate redundant variables, but it is
difficult to perform pivotings at the formula-
tion stage to avoid zero diagonal entries.

In this paper we develop a new type of
nodal approach which solves all the above-
mentioned problems. The resultant formula-
tion is called the reduced modified nodal
approach (RMNA) in the sense that redundant
circuit variables in the MNA are effectively
eliminated. And three types of pivotings are
devised to avoid zero diagonals in its matrix
form and to reduce the number of nonzero
entries in its upper triangular matrix. As will
be seen, the RMNA retains the simplicity and
other advantages of the nodal approach and
of the MNA, while removing their limitations
with little effort,

H. Reduced Modified Nodal Approach

For a given circuit Np, consider those
branches whose currents are required as circuit
variables, that is, the controlling branches of
current-controlled elements (including imped-
ance type elements) or the branches for output
currents of interest. Here, an impedance type
element implies one whose voltage is controlled
by its own current, such as a current-controlled
element described by an equation of the form
v = f(i) and the inductor, In the MNA, these
branch currents, as well as the branch currents
for VS’s, are adopted as additional circuit
variables. For each of these branches we insert
a short-circuit branch (SCB) with an inter-
mediate node, as shown in Fig. 1, if it is not
already a SCB. The currents of the SCB’s are
used as the circuit variables in place of the
original branch currents. This process does not
affect the circuit solutions, but simplifies the
procedures of reduction, pivotings and formu-
lation of the circuit matrix, as will be seen
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Fig. 1. Insertion of a SCB. (a) Original branch,

(b) Modified branch. (¢} Treatment of
an inductor (as an example of the
impedance type element),

shortly, since all the branches for the current

variables are then the SCB’s and the VS’s are

distinguished from the SCB’s.

The following assumptions are imposed on
the resulting circuit N augmented by the SCB’s:
1. All controlling currents and output currents

are those through SCB’s.

. There are no loops consisting of only VS’s
and SCB’s, and no cutsets consisting of only
current sources and open-circuit branches,

3. N is connected and linearized.

Notice that only three types of elements exist

in N: (i) current-defining elements such as

admittances, current sources and open-circuit
branches, (ii) VS’s, and (iii) SCB’s. Impedance
type elements are converted to current-
controlled VS’s, Let N consist of n nodes
except the reference node, bd current-defining
elements, bv VS’s, and bS SCB’s. Similarly, let

N_ consist of n_ nodes except the reference

node, bpv VS’, and bpS SCB’s. Then, n=np+

(b,~by) and by, <bv <bpv+(bs—bps), since

the number of nodes in N is increased by the

insertion of SCB’s into Np.

According to the above assumptions, the
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branch relations of the circuit elements in N
are of the following form:

ia=Hgq vat+ Hav wtHas is+sq
vw=HyavatHyy wt+Hysis+sy

vs= (0

(1)

where id and V4 are the current and voltage
vectors of b d current-defining elements, iv and
v,, the current and voltage vectors of bv VS’s,
is and g the current and voltage vectors of
bS SCB’s, respectively., The meanings of the
coefficient matrices in Eq. (1) are evident.
Eq. (1) is general in the sense that it charac-
terizes all types of elements in N (or in N_).
We partition the reduced incidence matrix A
and the branch current and voltage vectors,
ib and Vi» accordingly as follows:

Az[Ady Ay, As]
is =[id» iv, is]

(2)

vo=[va, w, vd

Then, the MNA matrix equation for the circuit
N takes the form

AdedAI+ AsHay A3 Ay A5+Ades Vn ~Ays4
A:‘HVdA;_HVVA‘\". 0 _Hvs Iy |= Sy
A 0 0 is 0
(3)
where v_ is the vector of n node voltages in N

and T denotes the tranpose.

Eq. (3) shows a simple form that VS
currents and terminal node voltages of SCB’s
are related to only corresponding reduced
incidence matrices, Av and AS, respectively.
In general, the current through a VS and one
of the two terminal node voltages of a SCB
are of no interest: these ‘redundant’ variables
can be eliminated in Eq. (3) by simple summing
operations as follows. A VS current can be
eliminated by summing two row equations
corresponding to the nodal equations of the
VS nodes. For a grounded VS this operation
results in deletion of the row equation corres-
ponding to the nodal equation of the un-
grounded node. By similar operations, the
redundant node voltages associated with
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SCB’s can be eliminated; in this case, the
columns corresponding to the terminal node
voltages of SCB’s are summed (or deleted).

For a systematic elimination of variables,
we perform two summing operations in A.
One is applied to each column of A, to get a
reduced incidence matrix A_ of rank (n—bv)
with (n~bv) rows, while the other to each
column of A, to get a reduced incidence
matrix Ac of rank (n—bs) with (n—bs) rows.
A, and A_ can be interpreted as the reduced
incidence matrices of circuits formed by
collapsing terminal nodes of VS§’s and SCB’s,
respectively, With these, two types of reduced
incidence matrices, we get

(n— bs) bs

(n— by} [ArsHaAlt AreHaAl Arst ArHes) [Ven ]= [ — Arase

be [Ah- HoAL- HoAlL  —H, Hl H S }

(4)

Where

Ar=[Ard.y 0, Ars]

Ac=[Ac, Aoy, 0]

VbzA;:ern

Eq. (4) represents the n circuit equations of the
RMNA, in which redundant variables are
eliminated. The full ranks of A, and Ag
guarantee linear independence of the equations
in (4). The number of variables is equal to the
number of nodes in N as in the nodal approach
and reduced by (bv+b s) as compared to Eq. (3).
In terms of the original circuit NP, the MNA
requires (np+b v+bs) variables with (bpv+
b S) variables reduced.

We will now consider how to formulate
these RMNA equations directly from the circuit
N.

Remove from N the branches (leaving their
terminal nodes) other than VS’ and SCB’s
and denote the resulting subcircuit as NVS'
The subcircuit NVS will become a subgraph of
some spanning tree containing all VS’s and
SCB’s under the assumption 2. From NVS’
we form two subcircuits, First, we remove all
SCB’s from NVS and denote the resulting
subcircuit as NV. Also, we remove all VS’s
from NVS and denote the resulting subcircuit
as NS‘ The subcircuit NV consists of (q—bv)
components (separate parts) excluding the
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component containing the reference node;
some may be isolated nodes and others may
contain one or several VS’s with their terminal
nodes. For each component C in NV’ we
formulate one cutset equation encircling C
(i.e., the cutset equation obtained by applying
the KCL to the cutset branches of N encircling
C). In total, we get (n——bv) Kirchhoff current
equations, which are linearly independent since
each of them is associated with a mutually
exclusive node or a node set, In these equa-
tions, the contributions due to VS currents do
not appear, since all V8’s are contained in the
components of NV In other words, the above
cutset equations are expressed in terms of only
node voltages and SCB currents; they are the
cutset equations as obtained in Eq. (4). Fig. 2
shows several cutsets to be considered in the
RMNA. The cutset equations corresponding
to Figs 2(a), (b) and (d) will be used as the
RMNA equations, while those for Fig. 2(c)
and (e) will be deleted, The branch relations
for VS’s are bv additional independent circuit
equations, which are also expressed in terms
of node voltages and SCB currents. Similarly,
the subcircuit NS consists of (n—bs) com-
ponents except the component containing the
reference node. Since each component in NS
contains only one node or nodes connected
by SCB’s, only (n~bs) node voltage variables
are needed to represent all of the node voltages
in N. The bS SCB currents are used as addi-
tional circuit variables. Consequently, we use
NV for formulating the RMNA equations and
NS for adopting the RMNA variables.

III. RMNA Pivotings

In Section II, two types of subcircuits are
considered independently.  However, it is
possible to combine them into one subcircuit
NVS with an aim to avoiding zero diagonals in
the matrix form of equations. Since NV and
NS are edge-disjoint and NVS=NV U NS, we
can establish one-to-one correspondence be-
tween the set of RMNA equations and the set
of RMNA variables through one node ordering
process in Ny,g.

One basic node renumbering scheme per-
formed in NVS is proposed in [5], exploiting
the tree structure of NVS' This scheme fits our
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(e)

RMNA cutsets. (a) Cutset encircling a
node, (b) Cutset encircling a VS. (c)
Cutset encircling a grounded VS. (d)
Extended case of (b). (e) Extended
case of (c). (Bold and dashed lines
show VS8’s and cutsets, respectively,
while the solid lines represent branches
other than VS’s,)

Fig. 2.

basic aim and furthermore gives some freedom
in the node ordering since, at each renumbering
stage, nodes with a degree of 0 or 1 in NVS
may be renumbered in an arbitrary order. This
freedom can be capitalized in refine our scheme
further. Here, we invoke the concept of the
Markowitz algorithm [6] as applied to rows
only with the introduction of node weights in
order to reduce the number of nonzero entries
in the upper triangular part of the matrix. This
simple modification can be used for the one-
way node scheduling [7].

For this purpose, we propose the following
strategy for sequential node renumbering to
be performed in NVS‘

Step 1. (Short-circuit branch insertion)
Construct the augmented circuit N from a
given circuit Np by inserting SCB’s such that
each of them satisfies the following conditions
as far as possible (in the priorities listed):

(a) It is not adjacent to independent VS’s:
(b) It is not adjacent to dependent VS’s:
(c) It is not adjacent to SCB’s:
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(d) It is connected to the node with a smaller
node degree in N.

Step 2. (Node renumbering procedure)
Let C be a set of candidate nodes for renumber-
ing, D(k) a set of nodes with a degree of k in
NVS’ and w(m) the number of unordered
variables when formulating the circuit equation
associated with a node m.

Initialization:

(a) Form a subcircuit NVS of N,

(b) The reference node is renumbered as (n+1),
the largest number.

Repeat the following steps (a)—(d) until C=0:

(a) C=D(0) U D(1) — (reference node),

(b) For each node m in C, find the node
weight w(m).

(c) Renumber a node x in C, whose weight is
minimum,

(d) NVS — NVS_ {x1, and update D(0) and
D(1).

This node renumbering procedure terminates

in n repetitions. If not, one of the assumptions

2 and 3 is violated. The calculation of node

weights at each iteration is straight-forward,

since renumbering the node number determines

the order of the corresponding equation and

variable,

For the notational convenience, let P(m) be
the new number of a node m after the above
node renumbering procedure: MX(C) the
node representing a (sub)circuit C (ie., the
node in C with the largest renumbered node
number): MN(B) the node representing a
circuit element B (i.e., the node of B with
the smaller renumbered node number): IV(m)
and IS(m) the component in NV and NS
containing a node m, respectively; and IVS
(C) the component in NVS containing a com-
ponent C in Ny, or in Ng. With these notations,
we establish one-to-one correspondence be-
tween the set of RMNA equations and the set
of RMNA variables through the node renumber-
ing in NVS’ as follows.

By renumbering a node m of degree 1, we
can relate (i) the branch relation of its adjacent
VS to the identical node voltages in 1S(m), or
(ii) the cutset equation encircling IV(m) to its
adjacent SCB current. Also, by renumbering a
node m of degree 0, we can relate (iii) the cut-
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set equation encircling IV(m) to the identical
node voltages in IS(m). We then place the
cutset equation encircling IV(m) at the
P(MX(IV(m)))-th row and the branch relation
of a VS denoted as B at the P(MN(B))-th row.
On the other hand, the voltage of a node m
is corresponded to the P(MX(IS(m)))-th circuit
variable, and the current of a SCB denoted as
B to the P(MN(B))-th circuit variable,

From the above discussion, we define three
pivoting vectors, namely, the node renumbering
vector q, the row pivoting vector r and the
column pivoting vector c:

q,=P(m),
r,=PMX{IV(m))), i=1,2,-,n, (n+1)
c,=PMX IS (m))), (5)

where m represents the node numbered as j
in the original node numbering,

By using q and r for formulating and order-
ing the circuit equations, and q and c for
adopting and ordering the circuit variables,
the element stamps of the RMNA are easily
obtained, from which the RMNA matrix
equation is constructed by inspection. Table
1 shows the eclement stamps for several
elements. Notice that each circuit element has
a unique type of element stamp in the RMNA.
whereas two types of element stamps may be
considered in the MNA.,

Example 1. Consider the circuit of Fig. 3(a),
which contains two types of independent
sources, four types of dependent sources,
one nonlinear element, one capacitance, four
conductances, and five nodes except the
reference node, For the MNA, we choose
three branch currents for voltage sources and
one controlling current as the circuit variables,
in addition to five node voltages versus the
reference node. Then, the MNA matrix equa-
tion is

df
where Geo= v V. Teo= £(Vy) —GquS
and D denotes dt/d. According to the SCB
insertion process described previously, we add
a SCB to the branch of conductance of Gl’ as
shown in Fig, 3(b). We also apply the MNA to
this modified circuit to obtain
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Table 1. RMNA stamps for circuit elements.
Type Symbol Element stamps
RHS
Independent
current J ry -1
source
r, J
Independent e ¢ RHS
voltage E
source min (gr, q,) 1 1 E
o— ——
+ Cu Cw
vees ve <1> Gmve r Gm G
- r, ~Gm Gm
o e 0
o i
+ Cy Cy Cu Cw
VCVs Ve WWe
min{g,, q,) 1 -1 —u u
o O j
Cr r O i
mln (quv q')
CCCSs ic Bic r B
r; -8
et ! O j
O i
¢y c, min{qu, qw)
CCVSs ic aic
min (qy, q,) 1 -1 —a
o o j
i
mln(qh QJ)
Short-circuit
is ry 1
branch
] r, —1
)

(973)
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(b) (c)
node i 2 3 4 5 6
1] *1/0 1/4 1/2 1/3 1/2 Approach MNA RMNA
= 2 1/3 1/2 1/3 /1 .
2. diagonal bef ft bef ;
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6 1/0 #:l'of zero 3 0 4 0
iagonals
renumber 1 4 3 5 6 2 "
of nonero .
variable v, Vi=V, Vs ' Vs i entries 13/33 5/33 10/22 4/22
equation | BR 1 C2 [BR2| BR3 | C345 | C6 # of fill-ins 32 7 10 1
(* : node degree in Nys/node weight) (+ :in the upper triangular part/in the full matrix)
(@ (e)

Fig.3 Example 1. (a) Original circuit. (b) Modified branch of conductance of Gl.
(c) RMNA equations. (d) Node renumbering procedure, and equations and vari
ables associated with nodes. (e) Comparison of the MNA and the RMNA.

Vi ' A Vi Vs is, is; s, i

1[G 0 —G, 0 0 1 0 0 11 ([w] [ o

2] Gm Gy+CD —G, -—CD 0 0 0 0 —1 Vi 0

3|—-G, —Gs Gt+GH+G, 0 -G, 0 1 0 o0 vy 0

41 0 —CD 0 CD 0 0 -1 1 Vi 0

5|1 0 0 -Gy 0 G+Ge 0 0—-1 0 vs | = J+1e (6)

6| 1 0 0 0 0 0 0 0 0 is, E

71 0 0 1 -1 0 0 0 0 —a is, 0

8 0 —u u 1 -1 0 0 0 0 is; 0

9 G -G, 0 0 0 0 0 0 —1] Li] 0 |

v, Va Vs Ve Vs Vs 18; IS, iss i

1 [G+G, 0 —Gs 0 0 -G 1 0 0 0] [w] [ 0]

2! Gu Gs+CD —G —CD 0 0 0 0 0 -1 V2 0

3 —G, —G; G+G+G, 0 —G, 0 0 1 0 0O Vs 0

4 0 —CD 0 CDh 0 0 0 -1 1 & Vi 0

5 0 —G, 0 G+Ge 0 0 0 -—1 0 vi | | I

6 | —G, 0 0 0 G 0 0 0 1| |w| | o

7 1 0 0 0 6 0 0 0 O is, E

8 0 1 -1 0 6 0 0 0 —a is, 0

9 0 —u “ 1 -1 0 0 0 0 0 iss 0

100 © -1 0 0 0 1 0 0 0 0 _iJ L o
(7)
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For the reduction of network variables, we
apply the row and column suming operations
to Eq. (7) as follows:

1. Delete the first row to eliminate isr

2. Sum the third and fourth rows to eliminate
. Sum the fourth and fith rows to eliminate
igs.

Sum the second and sixth columns to
identify vy with Ve

The resulting formulation is given below.

4,

v V=V W v Vo
2 [Gy GACD =G, ~CD 0 =1][w] [ 0
3444+ 5| -Gy =Gi=CD GyAGy €D Geo B ||ve| I+l
6 |-G G 00 0 1|lwl |0
71 o 0 0 0 0llw |E
I 1 -1 0 -allw| | 0
9 [0 - w1 -1 0l Lo

(8)

Eq. (8) shows the RMNA matrix equation
which is derived from the MNA matrix equa-
tion, Eq. (8) consists of six circuit equations,
but contains the zero diagonals.

The zero diagonals in Eq. (8) are avoided
by the RMNA pivotings and the circuit equa-
tions of the RMNA are obtained directly from
the circuit without formulating the MNA
matrix equation. In Fig. 3(d) are shown the
process of renumbering node numbers per-
formed in NVS the resulting q, r and c are
obtained as

q=11,4,3,5,6,2,7]
r=1[7,4,6,6,6,2,7]
c=11,4,3,5,6,4,7]

Therefore, we have the following RMNA

matrix equation:

oo Vi ow=y Vi v
BRI[ 1 0 0 0 0 0w [E
G |- 1 0 G 0 olli] | o
BR2| 0 =« 1 0 -1 ol|w| |0
€2 {Ga -1 =G, GACD -CD  0||v| | 0
BR3} 0 0 u —u 1 ~1liw 0
CHS|~C; B Gr+Gy ~G—CD  CD Geol lvs] LI=lg

(9)
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Note that, as we intended, Eq. (9) consists of
six circuit equations which are equivalent to
those in Eq. (8), and its matrix has no zero
diagonals and is sparse especially in the upper
triangular matrix, which tends to reduce the
number of fill-ins generated in the subsequent
LU decomposition process. For this particular
example, comparisons between the MNA and
the RMNA are made as given in Fig. 3(e).
Here, the row-interchange in [1] and the
Markowitz algorithm as applied to rows only
are also applied to Eq. (6) for fair comparison,
The RMNA pivotings automatically avoid
zero diagonals and, as we expect, reduce the
number of fill-ins as well as the number of
nonzero entries and the matrix size, as compar-
ed with the MNA. Another interesting fact is
that contribution of conductance G4 does
not appear in Eq. (9). In general, any element
parallel with a VS or a series combination of
VS’s does not affect the circuit solutions, and
hence it is excluded in the RMNA matrix form.

IV. Difference from Other MNA Methods

The two-graph modified nodal formulation
in [4] intends to eliminate redundant circuit
variables by the use of separate voltage and
current graphs, which resembles the subcircuits
Nv and Ns’ respectively, in our approach. How-
ever, the voltage and current graphs may differ
not only in structure but also in the numbers of
nodes and edges, and hence they cannot be
combined into one graph for the purpose of
one node renumbering process, which makes
it difficult to perform pivotings at the formula-
tion stage to avoid zero diagonals and, at the
same time, to reduce the number of fill-ins,
In contrast, the RMNA uses one subcircuit
NVS=NV U NS’ which is possible because
NV and NS contain the same nodes and are
edge disjoint due to the inserted SCB’s. The
pivoting procedure in {2] also aims at avoid-
ing zero diagonals in the MNA matrix, but
it does not consider reduction of the circuit
variables. These points are illustrated in
Examples 3 and 4, respectively,

Example 3. In order to compare the two-
graph modified nodal formulation with the
RMNA, we apply the RMNA to the circuit
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of Example 4.8.1 in [8], which is reproduced
in Fig. 6. Then,

q =11,3,4,2,5]

r =[5,3,4,5,5]

¢ =11,3,4,2,5}
1 0 0 0 vy E,
0 1 0 —u vii |0
—G, —sCy G+GstsC,  —G, V2 0
0 0 —G; G t+sCsllvs 0
(10)

The network equations in Eq. (12) are the
same as those in Example 4.8.1 of [4], but
they are already so ordered as to avoid zero
diagonals. Furthermore, the matrix in Eq.
(10) generates no fill-ins during the subsequent
LU decomposition process.

>

Example 4. In order to compare the pivot-
ing method in [2] with the RMNA, we apply
the RMNA to the circuit of Example 3 in [2},
which is reproduced in Fig. 7 except that a
short-circuit branch is inserted in series with
the independent voltage source E for the

controlling current iy . Then,
q =[25193’475]
r =1[4,4,3,4,5]
¢ =12,1,3,5,5]
1 —1 "B 0 Va2 0
0 0 a E
o 1 M= (11)
-1 —1 3 0 i 0
2 1 —2 1-—allw 0

As we expect, the current variable i, does not
show up in (13). As a result, the number of
variables is reduced by 1 as well as the number
of nonzero entries is reduced by 4, as compared
with Example 3 in [2].

V. Zero Diagonal Problem

In order to treat the zero diagonal problem
in the RMNA matrix, we first state the follow-
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ing four lemmas.

Lemma 1. In the RMNA matrix, the rows
associated with branch relations have topologi-
cally nonzero diagonals, ‘1’ or *-1°,

Proof: For a VS denoted as B, consider
those nodes which are still connected with
MN(B) in NVS after removing B. Then, MN(B)
is renumbered as the largest number among
those nodes, which implies that MN(B)=MX
(IS(MN(B))). This completes the proof.

Lemma 2. In the RMNA matrix, the
columns associated with SCB currents have
topologically nonzero diagonals, ‘1’ or ‘-—1°,

Proof: Similar to that of Lemma 1.

Lemma 3. In the RMNA matrix, the rows
associated with cutset equations have nonzero
diagonals, if and only if each ungrounded
component C in Ny,, for which the condition
MX(C)=MX(IVS(C)) holds, has at least one
cutset branch whose current is controlled by
the node voltage of MX(C).

Proof: Consider an ungrounded component
C in NV If MX(C)=MX(IVS(C)), the branch
stated in the Lemma contributes to the
P(MX(C))-th diagonal entry: otherwise, MX(C)
is always incident with a SCB which is repre-
sented by MX(C). This completes the proof.

Lemma 4. If the circuit includes no
coupled-elements and has ny (=n—bv—bs)
admittances, which form a spanning tree
including all VS’s and SCB’s and each of which
is incident with at least one of the nodes re-
presenting the components of NVS’ then the
leading principal minors of the RMNA matrix
for any diagonal pivoting are all nonzero,

Proof: First, we derive the RMNA matrix
by partitioning the node voltages. In the
RMNA, each of VS8’s and SCB’s is related to
one of its two terminal nodes. Let Vv and
Vs be the sets of node voltages associated
with bV VS’s and bS SCB’s, respectively, and
Vod the set of remaining n, node voltages.
With this partitioning, we have the follow-
ing matrix equation of the RMNA:

Acrvv —Hs Achv [ Vry ‘ Sy
Arsded A(‘:-\'d Arss Arsd HddAgdd is|= ‘Arsd Sq ( 12>
Araallas Agvd Aras AdedAcT.m ‘*Arddsd
where
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by by bs
Add Adv Ads Ng
A :[Ad , Ay , A ]: Ave Aw Ay |by
Asa  Asv  Ass Ibs
Ae=[Ara, 0, An=| et O Arefna
Arsd O Arss bs
Acf‘[Acd, Ac\', 0 ]: Acas  Aca 0 |na
Awve  Acw 0 Iby

Comments. (a) Under the assumption of
no coupled-elements, H.,. Hvd’ Hdv’ and
Hds in (1) become zero coefficient matrices
and Hdd is a diagonal matrix with positive
nonzero entries. (b) Eq. (12) represents the
same equations as those in Eq. (4), but inter-
change of rows and columns is performed
so as to avoid zero diagonal entries. (c) By
a proper diagonal pivoting, Eq. (12) becomes
identical to the result obtained by the RMNA
pivotings. (d) Avv’ Ass’ Arss and Acvv are
square and nonsingular with nonzero diagonal
entries, since all V§’s and SCB’s form a sub-
graph of some spanning tree. (e) The first
(bv + bs) diagonals in the matrix of (10Q) are
1 or —1, as stated in Lemmas 1 and 2. (f) Ay
and ArSS have all nonzero leading principal
minors for any diagonal pivoting. (g) The
columns in Add corresponding to the ny
elements stated in the Lemma are linearly
independent. And this independence is main-
tained also in Ardd and Acdd' (h) Add’ Ardd
and Acdd are n; by bd matrices with rank ny.
(i) Ardd Hdd Acdd is nonsingular with nonzero
diagonal entries, as stated in Lemma 3. (j)
Ardd Hdd Acdd has all nonzero leading prin-
cipal minors for any diagonal pivoting,

We will now show that the matrix in Eq.
(12) has nonzero leading principal minors for
any diagonal pivoting. Let A(ab) denote a
submatrix of a given matrix A formed by the
intersection of the rows and columns of A
corresponding to integer sets a and b,
respectively, and also A(a.) a submatrix formed
by the rows of A corresponding to the integer
set a. Consider any principal submatrix of the
matrix in Eq. (12) by choosing suitable index
sets a, b, and c. The determinant of this sub-
matrix can be written as which is nonzero,

In Eq. (13) Brgy = Al Arss Brga™Ardd—
3 ol K -
Ards Arss Arsd’ Bcvd - clwAcvd’ Bcdd
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Acdd_AcdvAgvacvd' Note that Brdd is equal
to B,gq, since they can be interpreted as the
reduced incidence matrix of the circuit formed
by collapsing all the terminal nodes of VS’s
and SCB’s.

From the above discussion, it is evident that
the matrix in Eq. (12) has all nonzero leading
principal minors for any diagonal pivoting,
This completes the proof.

A (az } —Hys (ab) Acrdv {ac)
Arsd( )thAcva( ) Arss (bb Arsalb. )HddAcdd(c
: Amt( )HddAc\d( (Cb Anza( HddAcdd e
e el [ " [ [ Bru ) O]
Avas (ch) 0 Bralc.)
0
chVd(an ) Hilab)  Blalc.) ) 13)

The above four lemmas show that the
RMNA avoids topologically zero diagonals in
its matrix form. Especially, Lemma 4 guaran-
tees that the LU decomposition process of the
RMNA matrix will not fail for any diagonal
pivoting, The condition of Lemma 4 requires
existence of n4 admittances which connect all
the components in Nyg and satisfy the condi-
tion of Lemma 3. This condition is always
satisfied, when the circuit contains a spanning
tree of only admittances which are not parallel
with a VS or a SCB or their series combination
a probable situation in most practical
circuits, Note that any element parallel with
a VS or a series combination of VS’s does
not contribute to the RMNA equations, Fur-
thermore, this condition automatically holds
in all cases, if we use a spanning tree of admit-
tances including all VS’s and SCB’s instead of
the subcircuit st at the node renumbering
stage and renumber nodes with a degree of
1, sequentially. The following example cleari-
fies this point.

Example 2. For the circuit given in Fig. 4,
we obtain two cases of node ordering, each of
which obey both the ‘positive node selection
algorithm’ given in Appendix of Ref, [2] and
the RMNA pivotings in our approach. For each
case, the MNA matrix and the RMNA matrix
are obtained,
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Fig. 4. Circuit of Example 2. Case 1 and Case
2 are represented by the numbers in
the parenthesis and the rectangle,
respectively,

(Case 1)
Reduced incidence matrix

S1S2S3S4G1G2G3G4¢g

1 1 1
2 1 1
3 1 1
4 1 1
50-1-1 i0 000 0 1:
6 -1 -1:0 0 0 0 —1
MNA matrix
[ PR ooV, v ARA
1 Gl
1 G2
1 G3
1 G4
1 -1
1 -1
1 -1
1 -1
-1 -1 R
-1 el
RMNA matrix
Vi ' V3 Vi Vs Ve
1 —1
1 —1
1 —1
1 —1
Gl G2 g T =gl
G3 G4 !—_gﬁ_ g_l:

(Case 2)
Reduced incidence matrix
SI S2 S3 S4 Gl G2 G3 G4 g

1 1 1
2 1 1
3 1 1
4 -1 -1 -1
s|-1 -1 CRRR R
6 -1 0 0 1 o
MNA matrix
i iy i 1, v, vy V3 vy Vi Vs
1 Gl
1 G2
1 G3
-1 -1 g 8
1 -1
1 -1
1o
-1 1
-1 -1 8 g
1 G4
RMNA matrix
vy V2 Vi v Vs Ve
! —1 7
1 —1
1 —1
-1 1
Gl G2z -8 g8
G3 g —g G4

In Case 1, both the MNA and the RMNA
matrix have a singular submatrix. This
singularity arises from that the submatrix A ad
of the reduced incedence matrix is not of full
rank, Hence, the positive node selection
algorithm and the RMNA node renumbering
fail to select the admittances which satisfy
the condition of Lemma 4, That is, the admit-
tances do not form a spanning tree of the
circuit obtained by grounding all the nodes
representing VS’s and SCB’s and removing all
VS’s and SCB’s. In contrast, Case 2 shows that
both the MNA and the RMNA matrix have no
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nonsingular principal minors and the submatrix
Ayd is of full rank,

Although the above four lemmas guarantees
the nonzero diagonals in the RMNA matrix,
zero diagonals may still occur in very special
element connections with specific element
values and types. Fig. 5 shows the only cases
of zero diagonals occurring in treating VS’s
and SCB’s, regardless of Lemmas 1 and 2. A
simple case which does not satisfy the condi-
tion of Lemma 3, is seen when f(v) is removed
from Fig. 3(a) in Example 1; then the sixth
diagonal entry in Eq. (9) becomes zero. Except
for these three cases, the RMNA pivotings
always generate nonzero diagonals. If zero
diagonals appear in the RMNA matrix — a
very rare case in practical circuits, they do so
in the nodal matrix and in the MNA matrix.

Fig. 5. Occurrence of zero diagonals. (a) A
voltage-controlled voltage source is
adjacent to its controlling branch, and
u=1and q, < % (b) A current-
controlled current source is adjacent
to its controlling branch, and f=-1

and q; <qj.
——
(&3
® @ ©) @
[ G3
+
£ () Cs-"j O uv
o
Fig. 6. Circuit of Example 3,

Fig. 7.

Circuit of Example 4.
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V1. Conclusions

In this paper, a new and general nodal
formulation for circuit analysis has been
proposed, in which a special family of cutset
equations as well as the branch relations for
VS8’s are formulated in terms of node voltages
and controlling currents, This approach is
based on the MNA, but treats effectively VS’s
and SCB’s to eliminate redundant variables.
In the RMNA, the number of circuit variables
is always equal to that of nodes in the circuit
augmented by the SCB’s. Furthermore, the
RMNA pivotings enable the direct formulation
of the circuit equations by inspection and
avoid zero diagonal entries in its matrix, which
is sparse in the upper triangular part. Also,
they can be combined with other pivoting
processes utilizing some freedom in the node
ordering, as stated in Section I1I. Experimental
results for various circuits show that the RMNA
pivotings tend to reduce the number of fill-
ins in the subsequent LU decomposition as well
as the number of nonzero entries, as compared
with the row-interchange used in the MNA.

Incidentally, the RMNA pivoting schemes
and the SCB insertion process do not require
severe computational overhead and program-
ming effort, since in most CAD programs it is
necessary anyway to test the circuit topology
against the existence of a loop consisting of
solely VS’s and SCB’s, to examine the element
type for adopting the current variables, and to
go through pivotings, for avoiding zero
diagonals and minimizing the number of fill-ins;
our pivoting procedure can be effectively
carried out during this process. Once the
pivoting vectors are obtained for a circuit to be
analyzed, they are used through the whole
analysis procedure without any changes.

References

[1] CW. Ho, A.E, Ruehli, and P.A. Brennan,
“The modified nodal approach to network
analysis,” IEEE Trans. Circuits Systs., vol.
CAS-22, pp. 504-509, June 1975,

I.N. Hajj, P. Yang and T.N. Trick, “Avoid-
ing zero pivots in the modified nodal
approach,” IEEE Trans. Circuits Systs.,
vol. CAS-28, pp. 271-279, April 1981.

(2}



240

[3]

(4]

(51

Reduced Modified Nodal Approach and Its Zero Diagonal Problem

S.C. Fang and Y.P. Tsividis, ‘“Modified
nodal analysis with improved numerical
methods for switched capacitive net-
works,” IEEE Proc. of ISCAS, Houston
Texas USA, pp. 977-980, April 1980,

J. Viach and K. Singhal, Computer
Methods for Circuit Analysis and Design,
New York: Van Nostrand Reinhoid Co.,
New York, pp. 132-140, 1983,

Kjjun Lee and S.B. Park, “The reduced
modified nodal approach to network

[6]

(71

analysis,” IEEE Proc. of ISCAS, Newport
Beach, California, pp. 637-640, May 1983,
H.M. Markowitz, “The elimination form
of the inverse and its application to linear
programming,” Management Sci., vol. 3,
pp. 255-269, 1957.

AE. Ruehli and G.S. Ditlow, “Circuit
analysis, logic simulation, and design
verification for VLSIL,” Proc. of the IEEE,
vol, 71, no. 1, Jan, 1983,

(980)



