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A Analysis of Phase and Time Domain Characteristics

of Elliptic Filters
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Abstract

In this paper, we have investigated pole-zero shifting due to variable stopband frequency
wg and passband ripple Ap of elliptic function filters, Also, we have studied the phase,
group-delay, unit step response and impulse response of elliptic filters. We show that in the
passband the phase linearity improves as g increases, and eventually it approaches that of

a chebyshev function filter.

I. Introduction

Filter networks are of great importance, not
only in communication engineering, but also in
all fields of electrical measurement and equip-
ment engineering,

The Elliptic characteristic has a ripple in
both the passband and stopband. The ripple
in the stopband is produced by jw axis poles.
This is the reason for the large attenuation
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slope at the band edge. Due to this property,
the Elliptic magnitude characteristic is one of
the most useful in the design and synthesis of
filter networks,

Filter behavior in the frequency domain is
important in communication technology. How-
ever, the behavior of filters in time domain and
the consideration of their response to input
signals given as time function is just as import-
ant. Time domain characteristics of the input
and output signals of a system are measured
through the output signal distortion. Any
realizable system has an output that is distorted
from the input in various ways. Impulse
response and step response are two outputs
which are often used to measure the distortion.

The purpose of this paper is to discuss
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briefly the phase, group-delay, unit step
response and impulse response of Elliptic
filters.

II. Pole-Zero Shifting of an Elliptic Function

For convenience, the elliptic function may
be written as [1,2,3]

nf2 24 ¢
H(s)= K T ———1— n:even (1a)
2
i=1 S°ta;S+b,
(n-1)/2  S%+c,
His)= K e
St9 j=1  s2+aS+bi
n: odd (1b)

The typical pole-zero locations and the magni-
tude characteristics are illustrated in Fig. 1 for
n=6and n= 7, respectively [3,4].
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Fig. 1. (a) Pole-zero plot of typical elliptic
function of n = 6,

(b) Pole-zero plot of typical elliptic
function of n=7,

(c) The magnitude characteristic for

n=6,
(b) The magnitude characteristic for
n=7,
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As shown in Fig. 1(c) and (d), the stopband
frequency Wy is the frequency where stopband
begins. This parameter is used in this paper
instead of a modular angle @ so that we may
assign adequate values for

9 = sin! L 2)

Furthermore the passband ripple A _ (dB)=—20
log A_ will be specified instead of the reflection
coefficient p,

D
A,(dB)==101og [ 1 — (75p)°] 3)

There are tables in the reference [4] from
which we can find the order of the filter func-
tion for given passband ripples A_(dB), stop-
band ateenuation Ag (dB) and the stopband
frequency Wy For a given passband ripple
A_ and the order n, the stopband attenuation
AS becomes larger as W, assumes larger values.
In this paper we  sign wg = 1.1, 2.0 to observe
the way poles and zeros shift in the complex s-
plane. As shown in Fig. 2 the pole- Q de-
creases as wg increases and the pole location
converges to Chebyshev point C. On the other
hand, as A_ increases poles shift toward the jw-
axis inducing higher Q’s. The pole on the
negative real axis shifts nearer the origin and
transmission zeros on the jw-axis on the other
hand move further away from the origin.
Their locations are independent of Ap values.

III. Phase and Group-Delay

Since all the zeros are greater than unity
(cutoff frequency) and are located on the
jw-axis, they do not affect the passband phase
characteristic of the elliptic filters [4,7],
Using (1) the phase is computed as follows.

n/2
$(w) = —gtan-'—aﬁ—+2180° | w=ve,

b,— &
n:even (4a)
n-1 2
$(w) = —tan 2T 2L 51807 | w Ve,
g =1 b—w
n:odd (4b)

At every frequency greater than j/C; in (1),
the phase will be reduced by 180° due to the
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Fig. 2. Pole-zero shifting due to variable stop-
band frequency g and passband

riple Ap: (a) n=6,(b)n=17.

numerator of (1).

In the passband the phase linearity improves
as W increases and eventually it approaches
that of Chebysheve filter. As seen in fig. 2
phase linearity improves with increasing Wy due
to lower Q values. Smaller A_ improves phase
linearity for simijlar resons. In Fig. 3 the phase
characteristics are drawn for W = 1.1,2.0,and
for passband ripples of A_ =1.0.

For even order function, passive ladder
realization does not exist. The need for trans-
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Fig. 3. Phase characteristics for Ap = 1.0
(@) wg=1.1,(b) w =20,
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formers may be eliminated by modifying the
function so that the function vanishes at s =
oo The order of the numerator is (n—2) while
that of the denominator is n. There are two
kinds of possible transformations: One having
a dent at s=0 and the other having no attenu-
ation at s=0. The former is classified as Case
B, and the latter as Case C. For comparison
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Fig. 4. Typical magnitude characteristics of:
(a) Case A, (b) Case B, (c) Case C and
(d) high-Q pole shifting.
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the original even function is called Case A.
These three Cases are shown in Fig.4 for n=4
including the locations of the highest Q pole.
Case A is the closest to the jw-axis, Case B
and C follow in that order. Phase character-
istics of Cases A, B, and C are plotted in Fig.
S for n=4 and n=6,

Phases of Case A and Case B are almost
identical and the linearity improves in Case
C due to lower Q value. Group-delay charac-
teristics are obtained by differentiating (4)
with respect to w. They are plotted on Fig.
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Fig. 5. Phase comparison of Cases A, B, C for
Ap = 1.0 : (a) wg = 1.1, (b) w = 2.0.
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Fig. 6. Group-delay for Ap=1.0: (a) we= 1.1, Fig. 7. Group-delay comparison: (a) we = 1.1,
(b) w = 2.0. (b) wg=2.0.

6 and Fig. 7. As confirmed by the phase
curves, the flatness of the group-delay improves
for larger W, smaller A_ (dB) and lower order
n. Case A, B, and C are compared in Fig. 7
for n=4 and n=6.

IV. Unit Step Responses

(575)

Due to the transmission zeros on the finite
point on the jw-axis and poles of relatively
high Q, the time domain behaviors of the
elliptic filters are considerably different from
those of all pole function filters such as Butter-
worth or Chebyshev.

The unit step response can be expressed
as follows.
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n/2 _8y
a(t):1+‘§A,e 7 cos(wit+a,) n:even (5a)

n_i 2 B
alt) =1+ A% 5 A ' cos(wittal)
=1

n:odd (5b)

where w; =4/ bi - (1/zai)2

The following are observed:

1. Even functions exhibit non-zero values
(which decrease with ws) at t=0. Their
overshoots are higher than those of odd
function.

2. As Wg increases, delay time becomes longer.

3. As A increases, overshoot becomes higher
and tﬁe delay time longer.

Unit step responses are shown in Fig. 8w5=
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Fig. 8. Unit step response for Ap = 1.0

(a) w, = 1.1,(b) w = 2.0.
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1.1, 2,0 and A_=1.0. Cases A, B, and C are
plotted in Fig. 9. Case A and Case B are
almost identical.
V. Impulse Responses
The impulse responses are obtained by

applying the inverse Laplace transformation
on H(s) of equation (1).

h(t) =B, (t) +j§ B,ej:l‘t cos (wt+ £ ) nzeven (6a)

(n-1) 2 ai
h(t):B{e"'°'+Zl‘, B/e 3" cos(wt+A,) n:odd
(6b)

Characteristics similar to step responses have
been observed in the impulse responses. It is
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worth noting that the impulse exists in h(t)
when n is even. And for odd n the 9, becomes
smaller for increasing Wy Impulse responses
are shown in Fig. 10 for w's=l.1, 2.0and A_=
1.0. Cases A, B, and Care compared in Fig. 11,
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Impulse response for Ap =
(a) W= 1.1, (b) W= 2.0.

Fig. 10. 1.0

VI. Conclusions

The phase and group-delay have been
examined. The time domain characteristics
of the elliptic filters have been analyzed and
compiled for various stopband frequencies and
passband ripples. Case A, B, and C have also
been compared for n=4 and n=6. All figures
have been plotted by a VERSATEC D1200A
plotter using an AMDAHL 5850 computer.
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