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Calculation and Estimation of Acoustical Length from

Ultrasound Signal for Diffraction Tomography
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Abstract

There are considerabel interests in the use of acoustical lengths for characterization of
scattered data required in diffraction tomography. In this paper, we present two new methods,
calculation of acoustical lengths by Hilbert transform and estimate on of integrated values on
the scan lines from calculated values, These techniques offer insight into the acquisition of
projection data in diffraction tomography. The validity of the proposed methods has been

confirmed by computer simulation.

1. Introduction

One can determine the spatial distribution
of acoustic refractive index within an object
from many projections of the object obtained
by using ultrasound beams instead of X-rays.

In general, the ultrasonic C.T., based on the
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assumption that acoustic wave passes straight,
employs the X-ray C.T. algorithm, but is infer-
ior to X-ray C.T. due to the error resulting from
the scattering of wave.

Because ultrasonic energy does not pro-
pagate along straight lines, there is considerable
interest in using acoustical lengths to charac-
terize scattered data required in diffraction
tomography.

The acoustical lengths are represented by
the phase of received ultrasonic signals. There-
fore, we investigate the acoustical lengths so as
to measure the attenuation coefficient and
refractive index.

We introduce two new methods; the first
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is to calculate acoustical lengths by Hilbert
transform and the second is to estimate inte-
grated values on the scan lines from calculated
values,

These techniques offer insight into the
acquisition of projection data in diffraction
tomography.

I1. Theoretical Details

The basic equation for ultrasound wave
propagation [1] is
w?

<2 (F) + — Y@®=0, 1)
c

where T is a position vector and c is the
velocity, W () is the complex valued
time independent function.
We define a new function, ¢ (¥) such that

V() =exp [1K &) 1. (2)

Substituting eq. (2) into eq. (1), we obtain

K 1o -ve-ve + n?=0, 3)
where n is the refractive index.

Deviding n and ¢ into two parts, we have
n=1+mn =gt ¢4, 4)

where ¢p is the solution in the unperturbed
medium, n; and ¢; are randomly varying
quantities and their mean values are zero.
Substituting eq. (4) into eq. (3) and neglecting
second order terms, we obtain

(5)

véo.v P =1y,

where ¢o = ko. I.

Let @ be an entry point and b a received
point. Using these variables, eq. (5) can be
integrated along a path between a and b.

bing () — bipg (@) = l B N igg () ds
(6)

Ym(b) ™ Pum @) = f;b Mam (7) ds

(279)
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Where RE and IM indicate the real part and
imaginary part.

Eq. (6) can be considered to be two recon-
struction formulas [2], one for the speed of
sound and one for the attenuation coefficient.
Because scattered data required in eq. (6) are
acoustical lengths, ¢; (r), our attention is given
to acquisition of acoustical lengths in next
chapter.

IHI. Calculation of Acoustical Length

cattered pulse
Incident pul ps(f,t)

Po(t)

—

Fig. 1. Bioligical tissue being interrogated by
ultrasonic energy.
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In order to be explicit, we assume that the
random inhomogeneities occur only in the
right half-space (x > 0) and that the left half-
space ( x < 0) contains no random inhomo-
geneities. A place wave [3],

= -i

Po—Aoe (wt—KOX) @)
advances from the homogeneous to the in-
homogeneous medium.

We look for a solution of the wave equation
in the right half-space in the form,

P = A(H e [t — SD], (8)
where AS (¥) and S(t) are unknown func-
tions.

The gist of the method consists in replacing
the wave function PS by another function,

¢1 (1) [4]
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PS = Ao e'i[(‘)t"¢1(f)] , )

A®)
where ¢;() = S(r) — ilog —2
(o]

The real and imaginary parts of the function
¢; (r) just introduced determine the phase
and the logarithm of the ratio of amplitudes,
respectively as follows:

P(1t) = Aoe'koq)lIM(f) HOt=K b2 6@ (10)

In practice, the scattered waves are measured
as real quantity of pressure. On the other
hand, measurements are always real,

- Koby1aa(s). -
P(r,t) = RE [A e 0%1m(®). ilwt—Kodppc]

an

Let Ps(f, t) denote an analytic signal [5].
P(F,t) = P(7,1) }RE +i PS(},t)! N

where, P(T,t) lRE = a real signal of finite
energy, and
PR |y = Hi [PyE) | = the
Hilbert transform of
.0l
PO RE -
The imaginary part of analytic signal, PS (1,1),
can be solved by Hilbert transform of received

signal. From eq. (12), we can write the fol-
lowing equation:

¢IRE = - [ tan'l (&}ﬂ) —wi ]
P iRE

Gy =~ [log (Pl g2 + Plpy2) — (13)

log (A,%) 1/ 2Ko.

IV. Phase Unwrapping

As defined in the eq. (13), ¢1RE, as estimat-
ed on a digital computer are discontinuous
functions [6]. This is due to the fact that arc-

(280)

tangent routines in a computer provide only
the principal values lying between —w and 7.
Therefore, phase unwrapping is required for

the measurement of ¢1RE'

Let Arg [¢1RE ()] be the principal value
and arg [¢1RE ()] be the unwrapping phase.

arg [¢,pp(DI= Arg [¢p . (D] + 270, (14)

The phase unwrapping problem amounts to
determining the correct integer value & o
This is carried out by following steps:

We now consider the practical situation, where
the principal value and unwrapped phase are
available over a discrete set of 1, i.e., ¢>1RE[n]
are given.

Step : set arg [¢, oo [n] ] = Arg (¢, o [n] 1.
Further, we can write,
larg (¢, g (0] ] —arg [, p[n-1] <m
or equivalently we have

| Arg [, gpln] 14271, — arg

(6, g [n—111 <. (15)

In a like manner, the value of lc’ where
c=1.2,3, ...., n, can be obtained. But the above
procedure is based on the condition that
reference point n satisfying arg [¢

wme[n] 1 =
Arg [¢1RE [n] } should be known.

We study the method for the determination of
reference point., The time taken to go the
distance L is given by the formula.

t= _CL fL n(x,y,z) dx (16)
0 Jo

The mean transit time is

t= Tf“ 1 L
0 Jo n(x,y,z) dx= C_/ dx, (17)
0 el

since n=1,
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The deviation from the mean is given by
C

fL n(x,y,z) dx——l—fL dx
o Jo Co o

lfL
= ¢ | m(xyz)dx.
CoJo

At=t—t=

From the equation (18), we can find the
distribution of velocity. Therefore, we can
determine the reference point in the region
that is relatively continuous and consistent
with the velocity of biological tissue.

V. Estimation of Projection Data

From the real and imaginary parts of
acoustical lengths, we determine the pro-
jection data required two reconstruction for-
mulas, one for the speed of sound and another
for the attenuation coefficient.

Now we consider an important observation
in which the scale variation of the phases and
the ratio of amplitudes depend on velocity and
attenuation of medium,

The width of each of the scale variation
corresponds to the average attenuation co-
efficient and velocity of propagation on a scan
line.

These results based on observation are
shown in the following computer simulation.

V1. Computer Simulation

1 Outcome of Simulation Data
(1) Phantom

We assume that the phantom used in simula-
tion is cylinder whose diameter is 20 cm. We
have chosen fresh liver tissue as an object. The
attenuation coefficient and velocity for the
typical soft tissue, that is, fresh liver tissue have
the values of approximately 0.1/cm/MHz [7]
and 1549m/sec. [8].

(2) Received signal

Received signal can be obtained from Eq.
(11) by computing the amplitudes of incident
wave and the acoustical lengths. Where the
amplitudes A o’s of incident wave are obtained
by using transducer whose center frequency is
3.5 MHz.

(281)
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If refractive index ng (7) is

0@ =05, O —in, ©, (19)
attenuation coefficient and sound velocity have
the relation given in eq. (20).

a() =k np, (@), n (D =vy /M@  (20)

Acoustical lengths on received surface are
obtained from eq. (6) and (20).

2. Result

The object is insonified by a plane parallel
continuous wave. The scattered wave is re-
ceived along a measured line and its velocity
and attenuation are measured. Many ¢4(n)
(n=1, ...... , 45) are measured each for a seperate
rotation of the object, @n. (Fig. 2) The image
reconstruction is done by using the filtered
backprojection algorithm.
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Fig. 2. Coordinate system.

Fig. 3. Phantom (0=0.1/cm/MHz, v=1549m/
sec.)
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We performed the computer simulation by
letting the number of pixels on the recon-
structed image be 46x46, with the assumption
that the refractive index and the attenuation
coefficient per a pixel are 0.955 and 0.35 with
the consideration of the cylinder-shaped object.

When we get the values of the right hand
side of eq. (13), it is required to get the values
of imaginary part. It is obtained by the con-
volution of the received signal and Kernel,
1/mt, in the discrete frequency domain,
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Fig. 4. Transmitted signal.
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Fig. 5. Variation of real part (¢1RE = 0.855).
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Fig. 6. Variation of imaginary part
6.65).
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The waveforms obtained by eq. (13), when
the value of the real part and the imaginary
part of acoustical length are 0.855 and 6.65,
are seen in the Fig. 5 and 6.

In the Fig, 7 and 8, the projection data
obtained by this method are compared with
the ideal projection data.

In the Fig. 9-b and 11-b, the reconstructed
values which is calculated by filtered back-
projection algorithm, with the measured pro-
jection data, are represented in the three
dimension.

In the Fig. 10-b and 12-b, the cross-sectional
profiles of reconstructed images, with the
measured projection data, are represented.

We have tested the proposed algorithms in
computer simulations. On the refractive index,
the distribution of the reconstructed values is
hindered from blurring, by applying the
method presented in this paper, but the values
in the object space are a little far from desired
values. Meanwhile, on the attenuation co-
efficient, not only the distribution of the
reconstructed values is hindered from blurring,
but also good values in the object space can be
obtained. But it is susceptible to the noise.

Fig. 7. Projection data of refractive index

distribution,
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Fig. 8. Projection data of attenuation coeffi-
cient distribution.
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a) Reconstructed image using desired pro-
jection data,
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a) Reconstructed image using desired pro-
jection data.

b) Reconstructed image using measured pro-
jection data.

Fig. 9. Reconstructed images of refractive
index distribution,
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Fig. 10. Center - line profile of reconstructed
refractive index distribution.

The above problems, when the propagation
distance is short, result from the small varia-
tions of amplitude and refractive index in the
time domain,

To solve the problems above, the research
on image reconstruction algorithm for diffrac-
tion tomography should be added.

The procedure of obtaining solutions of
the real and imaginary parts of n was
investigated by Greenleaf and Johnson [91,
but it possibly becomes an unstable process
since a process of deconvolution is involved.

Recently, Greenleaf [2, 10] dealt with the
problems about data acquisition, but had some

b) Reconstructed image using measured pro-
jection data.

Fig. 11. Reconstructed images of attenuation
coefficient distribution.
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Fig. 12. Center - line profile of reconstructed
attenuation coefficient distribution.

problems in filtering out high frequency terms,

On the contrary, the method presented in
this paper was designed to solve the problems
arising from deconvolution process and filtering
by applying Hilbert transform.

VIIL. Conclusion

We have studied the problem about the
calculation of acoustical length from scattered
wave, The results indicate that the problem of
profile construction could be solved by values
derived from variation widths. It, however,
seems that some problems are induced in the
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case of refractive index if the propagation
distance is small.

In the present method, we assumed that the
incident wave is a plane wave and each of
distribution of refractive index and attenuation
coefficients is homogeneous. But, the improv-
ed result will be obtained by taking into
account multipath effect and the effect on
amplitude induced by the refraction.
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