74

R 86-23-1-1

An Enhancement of Dynamic Range for the Active

Realization of Elliptic Filters

(Be®h w5EE = o RX SRR HHL)

& K Y, F & ®*
(Dong Yong Kim and Chong In Lee)

ShUEHE jo H4bol Loie] A (zero) e %

asich webd eflgsE FEsavtes YUY

e FolA ¥4F biquad? 4 (product) 22 F3Hct

2 mRoAe M FHe e 242 93 3d pole-zero pairing¥#-F AAgct zelm:, 7

biquadl T4 & 233} A7l gabd M e, Qabdor AEse FAHHL wyo] el Ys o A

Sl HE5 7] hgs 2ok & el Atd

o sekdrt

£ 9l%39 Leuder ¥W¥el| W& approximation

Abstract

The elliptic functions have a set of zeros on the jw axis. In active realization we decom-
pose a function into the product of biquads. In this paper, a simple method of pole-zero
pairing is proposed for the enhancement of overall dynamic range. Secondly, the optimum
sequencing of individual bigquads is developed and it is demonstrated that the commonly
accepted sequencing technique does not hold in the case of elliptic functions. This work

is an approximation for Leuder’s (1970) method,

I. Introduction

In the cascade realization of active networks,
the given function of order n must be decom-
posed into a number of biquads (for n even) or
into a first-order function in addition to
biquads (for n odd). In the decomposition,
there are the problems of pairing the poles and
zeros, sequencing of individual biguads and the
gain distribution, We may therefore optimize
the decomposition process in order to enhance
an important performance measure such as the
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dynamic range or sensitivity.

Lueder decomposed the function and
maximized the dynamic range of a whole net-
work while minimizing inband losses (1970)'",
and aiso proposed the use of a dynamic pro-
gramming method to simultaneously implement
gain distribution (1975)'%. Halfin (1970)"*"
solved a similar proplem taking a slightly
different approach. Moschytz (1970)
utilized the degrees of freedom or the given
problem to minimize the transmission sensi-
tivity and suggested the second-order pole-
Zero pairing method,

In this paper we deal with the pole-zero
pairing, gain distribution and sensitivity mini-
mization of an elliptic filter making use of
specific properties pertaining to elliptic func-
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tions in general. Elliptic functions have trans-
mission zeros at specific points on the jw
axis (Figs. 1 (e) and (b) ). A lowpass filter
realized from an elliptic function produces
the magnitude characteristic which is an equal
ripple in both the passband and the stopband
as shown in figs. 1(c¢) and (d). As a conse-
quence, the elliptic filter is optimal, in the
sense that for a given order n and given ripple
specifications in the passband and stopband,
the transition band is minimal,

We shall introduce a systematic procedure
to generate an F matrix from which the pair-
ing of poles and zeros are assigned so as to
yield each biquad having the flattest possible
magnitude response. Subsequently, the
particular cascading sequence that results in
the transfer functions, from the first input to
the biquad outputs, having the flattest magni-
tude will be developed for the case of elliptic
functions with reference to the @ of individual
biquads.

Owing to the nature of the elliptic function,
every pair of poles must take a pair of finite
zeros on the jw axis to form a lowpass notch
function. A relatively simple method pole-
zero pairing will be developed to improve the
overall dynamic range of the realized filter,

II. Elliptic functions and pole-zero pairing

Elliptic functions, first introduced by Cauer,
are rational functions of order n in which the
degree of the numerator is equal to that of the
denominator for even n, and one less than that
of the denominator for odd n. Since poles p;
and zeros z; are tabulated (Huelsman and Allen

1980)'" we may write the function in factor-
ed form for active realization as follows
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Fig, 1. Pole-zero plot of typical elliptic func-
tion of (2} =6 and (b) n=7. Magnitude
characteristic for (¢) n=6 and (d) n=7.

where |p;| < o, <|z;|, and w, is the fre-
quency at which the stopband begins. To be
general, the subscripts i and { may taken on any
combination of 1, 2, 3, ... as shown in Figs. 1
{a) and (b).

For specified passband ripple K, stopband
ripple K, and stopband frequency w, as illus-
trated in Figs. 1{¢) and 1(d), we can refer to a
table {(Huelsman and Allen) and find the order
n, poles pj and zeros z;. Subsequently we
write the desired function in the form of (1)
for active cascade realization of the individual
lowpass notch functions of the type
(5 — 2Ms — z¥) _ s 4 wfj

(s — pis —p)

fifs) = » (2)
$P 4 B s+ wl

]
where w,; = Iz]'Iand wy; = {pi],and Qj is the
Q of pole Pi. The above implies various ways
of associating the pair of zeros to a given pair

of poles. There are (n/2)! (for even n) combi-
nations that suggest a possible optimum pairing
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for maximum dynamic range, This problem
will be solved by pairing the poles and zeros
such that the magnitude of each biguad t5i(s)
is as flat as possible over the filter passband.
The magnitude and the frequency which make
the magnitude maximum are obtained as
follows

w? — w?
Il =¢ = 3 1/2 (3a)
{wzi _ wz)z + (gﬂ) wil
7 Q;
r N2 1 1/2
() (- 59) -
wpi 2Qa
Wij = 2 @Wpi  (3b)
W, 1
+ o3 1
. \Wpi 20;
i rr‘j‘max = |Iif|m=wmr} (3C)

Owing to the nature of elliptic functions,
the minimum value | {;|.;, occurs at the edge
of the passband, namely at w=0 or w=1 de-
pending on the value of the pole Q. In order to
find the condition for Q. such that  [#;;|min
occurs at w=0, we impose |#;(0)| < | t55(1)]
from which we obtain the condition

_Ppi
(a’fj - 1)

Qi > 4 2 2z =% (4)
Wi\ (wp—1 !
[(wzj) (wzlj - 1) :I

Thus, we have from (3¢) and (4) that

[ £ fmin = (w ) if 0; > o (5a)
»
and
wf—1 .
“ijimin =T - .\ 2|12 otherwise
(]
[+ (3
otherwise (5b)

To find optimum pole-zero pairing let us
define the flatness matrix F gnd its elements
as follows (we can take the case of even n with-
out lack of generality)
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As shown in Fig.2, the normalized magni-
tude |t;;], = [t;;1/ ;] nax is plotted for various
{2; for the typical cases of n=6 and n=7 for
illustrative purpose with j=1 as a special case,

Because the maximum value of t;; is unity
for each biquad and fj; has its minimum in the
passband such that 0 < fij <1, the elements in
F are the direct indices of the flatness of all
possible pole-zero pairings. The diterminant
of the F matrix is taken and expanded into
(n/2)! terms, each term consisting of n/2
elements. If the element of minimum value
in the kth term is greater than the minimum
elements of the [(n/2)!-1] remaining terms,
then the pole-zero pairings corresponding to
the subscripts of the Ky term yield maximum
dynamic range.

Theorem 1 '

Let the poles p; be numbered beginning with
the lowest Q pole, and let the zeros be number-
ed beginning with the farthest on the jy, axis as
shown in Figs. 1{a) and (b). The optimum pole-
zero pairing for the enhancement of the dynam-

Fig. 2. Plots of the normalized magnitude of
Iospass notch sections.
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ic range coincides with the term consisting of
the diagonal elements of the flatness matrix F.

Thus the elliptic functions may be written as

ni2 ) n/2 (S _ Z-)(S _ Z")
T(s) = K t{s) = K RSt S ¥
ile il;ll s—pis—pH
for even n {7a)
n—1/2) 1 n—-1/2)
T{s) =K tis)= K
(S) r0 il=_[1 I(S) s+ 0 X
-2ds=20) for0ddn (7B

(s — pds — p¥)

Proof

Obviously the bigquad of the highest Q pro-
duces the largest maximum value, Therefore
we first examine the functions of the highest Q
role pair, ie. p,.;.

Since Q,,; > 02); Weuse (5a) to write
2
| t(m'Z)j ‘min = (wzj/wp{u,'l))

A - (2]

|I t[an)j imax =
n/2

Noting that @, =~ | We now obtain the

flatness by

_ N tmzyilmin 1

a ir(nﬁ)jlmax B 1 2
1 —
wzj Qn,’2

where w,; is closest to unity when j=n/2, mak-
ing the flatness largest, Thus Psz should be
paired with 2,,. A similar argument can be
foliowed for the remaining poles

ﬁnfl).i

Pii2)-15 Pj2y-22--5 P1

The above theorem confirms the results
previously obtained. This development differs
from Lueder’s in the sense that the F matrix
is introduced to the special case of elliptic
filter functions. A simultaneous method is not
applied for special functions such as elliptic
functions.

2 232 Wpns2) e
(Wpma) — OR) + W
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II1. Sequencing of biquads of lowpass notch
type

For cascading bigquads of lowpass notch
type, there are (#/2)! possible sequences. The
objective in this section is to find the particular
sequence that yields the flattest possible magni-
tude response from the filter input to the
various outputs of the lowpass notch type
biquads in succession. Let the ith biquad be
denoted by ii{s1, Implementing Theorem 1,
welet | = 1in(3)and (4) to rewrite

w? — w?

r . 9}’_"2 21,/2 (8a)
(wf — ™) + 0 i)

i

[/ w_\? 1 12
() (1)

It

wml’ = & 2 . _1” I wpi' (8 bJ
| wpi 2Q12
Dpi
a;: w.4p ﬂ)z-“-IZI',z

(3 — 1) (22) (28—
i Wy o —1

(8¢c)

where @®,,; is the frequency at which ||

becomes maximum, and ¢; is a criterion such
thatif Q; = o, ||, Occurs at =0,

In oider to develop a theorem for the
cascading sequence of the notch type biquads,
let us first assume that the order n is even,
and further classify into two cases (for k=1,
2,0

Case(a) n=4k

Case (b) n=4k - 2

Theorem 2
Let an elliptic function of even order n be
expressed as a product of n/2 biquads as

ni2

T(s) = K H t{s)
i=1

where the subscript is in the order of increas-
ing Q. The sequence of biquads for the
optimum dynamic range in cascade realization
is:
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Case (a)

T(s) = Ktmm "ty e T tmsy-1 T by ez T biway -
forn=4k, k=12,... (9a)

Case (b)

T(s) = Ktyn+zya) " tym+2ya1—1 ° Lime2yjal 41 °
t[(n+2),l4]—2 ) t[(n+2},"4]+2 R

forn=4k -2, k=12 ... 9b)
Proof

Owing to the lowpass notch characteristic
of the biquad, the maximum magnitude occurs
in the passband, and the passband minimum
occurs at the edges, namely at w=0 or w=1,
Let vs now normalize the magnitude of each
biquad as shown in Fig. 3, where Q; of #(s)
is such that )

Q1 <0s... <Qua<Quayr1 <...< @y
[ = i L q

first group

second group

(10

(11

For Q‘. > ai(f P (H/4)+I, ‘e n/2) the flatness
fr is determined by (14a) or closely approxi-
mated by (145). In (14b), (w,/w,,) is smaller
than unity owing to the lowpass notch charac-
teristic, and it decreases as i increases. Further-
more, since {; increases as i increases, it is
obvious that the flatness f; decreases as i in-
creases. For 0;<a; (i=1,2, ... nf4), we use (15)
to show that the flatness increases with increas-
ing ¢ as shown in Fig. 3 until the maximum
flatness is attained with the Q,, which is
located at the midpoint in (10). For the opti-
mal cascading sequence, therefore, we start
with the biquad t,, corresponding to th
from the first group which yields the minimum
value at w= 1, The next biquad in the cascade
must be #,.4,+; corresponding to Q.4 + 1
from the second group which produces the

R
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Fig, 3, Normalized magnitude of the biquads
in which @ corresponding to mid-
point () exhibits the highest flatness.
In case (g) m=n/4, and in case (b) m=
(n+2)/4.

minimum at @ = 0, It can be shown that the
magnitude |, toa+o| 05 the flattest
among the magnitudes of the product of any
two biquads, and the minimum value occurs
at w=0, This is turn necessitates the choice
of the next closest biguad tyq4)-1 from the
first group as the third biquad in the cascade, .
This process of choosing the bigquads based
on the normalized magnitude of biquads versus
pole @ completes the sequence as shown in
{9a). It is also to be noted that the minimum
of the magnitude of the product of any number
of biguads occurs at the frequency where the
last biquad in the chain becomes minimum,

In case (p). the midpoint Q is Q.2ya-
and the corresponding biquad f,, yields
the flattest magnitude, Furthermore, for
Q = @, +2ys all biquads produce a minimum
at w=0and for Q < Qg 4+z2y4 3t W=1, We
start with {42y, and follow the same de-
velopment as in case (g) to produce the opti-
mum sequence as given by (93).

Replacing @ in (82) by w,,; of (8h), and
carrying out a straightforward operation, we
derive  the maximum magnitude | &|pay
explicitly in terms of the known parameters

@, 0, and Q; as
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The minimum value |t;,;,, ©n the other
hand, depends on the value of @ in compati-
son with threshold ¢ defined by (8¢)

wi )\ .
lti |min = |t|'(0)| = (__ﬂ) lf Qi 2 *x; (133)
a)p,-
21
i = 1 £41)| = s
o ]
i

otherwise

(13b)

The flatness index is now obtained as

1 1/2
(‘ "z@)

| i |sim
Ji= =T 2 a1,z
|2 1 Vw, o !
i imax 1=y — |} Zof Wpi )
[ l-age)(22)(22) T
for @, > o, (14a)
Since @; » 1, we may approximate f; by
t; | 1
fi = e — for Q>
SR
wzi
(14 b)

For Q; < o; we use (12) and (133) to write

s 1 1/2
(w5 — 1)(1 - Eﬁ)

fi = 4 2 1/2
wy 1 \(oy
() (- ]

PRI
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When n= 10, for example, we write five
biguads in the order of pole Qg to find the
cascading sequence as indicated below by bold
numbers

(79)
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Tish = Key(s) - 1548) - t345) - 1405) - t4(s)

4 2 1 3 5
« cascading sequence

Forn =12, we have

Tis) = Ki(8) - t5(5) - t3(5) - 14(8) - 15(5) - t4l5)

5 3 I 2 4 6

When n is odd, the first-order function £,(s)=
1/(s+0o) should be properly treated in relation
to biquads. If we place fy in front in the
sequence as ty . fy , f; . f3, then the minimum
of | t,| occurs atw=0 while the minimum of
the product |ts . t,| does not occur at w=0
but at w=1, Thus it contradicts the optimum
sequencing method proposed in theorem 2.
On the other hand, if we place tg as last entry
to the sequence as t, . #; . t3 . Iy, the proce-
dure coincides exactly as presented in theorem
2. This leads to the realization of the first
order section at the last stage of the cascade,

IV. Hlustrative examples

Example 1

Find the pole-zero pairing, cascading se-
quence and the gain distribution for the opti-
mum dynamic range realization of the elliptic
function under the specification Kp=l dB,
Ky =40dB,and w,=1.1.

From the standard table we find » = 6,
which vields a pole-zero location as shown in
Fig.4(a).

For the purpose of confirmation let us con-
struct the F matrix.

2 3 £y
72.970935 | j 1309230 1 ;1115061
"
—0. 315089+ 0. 409244 I S hu
(@, ~0. B195) 0.2433 | 0.1171 0.0610
Pi
—0. 118730+ j0.B74514 fu fu fu
(Q, =3.7165) 0,2913 0.4821 0.3105
P
—0.0239274 7 0. 999416 fx fu fu
(@, =20, B908) 0.0540 0.1143 0.2425
1
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Fig. 4. Schematic pole-zero locations:
(a) Elliptic low-pass function of order 6.
(b) Elliptic high-pass function of order 6.
{¢) Elliptic band-pass function of order 12,
{(d} Elliptic band-stop function of order 12.
_ The (%etcrmmant of the above matrix con- _ (s — z3)(s — z%)
sists of six terms, namely fiy . fo . faas fia- far - t3(s) = m
3 3
farr fro- fa- fo1- foa- fao o1 s fun - s - fn
and fi, . foq - fa3>» Where fif is computed by _ (52 + 1:243362)
(6¢),(3c) and (5). The minimum elements in T (s + 0-047854s + 0:999404)
each of the six terms are fy; =0.2425,f); =
0.0610, f5, = 0.0540, fy, = 0'“_43’ and fu_: The normalized magnitude of each biquad is
0.1171. The largest among the six elements is R
4 theref xe th o plotted in Fig. 2(a).
I an¢ we thetelore take the term containing Using Theorem 2, we take the first three
faartefiy-faa-faa- ] . o biquads of (9b) in ihe following sequence
Subsequently the three biquads are identified
ag
% 19 = Knlo) - 1409) - 1
2 T(s) = . .
g = B zds = 2D v, 2ls) - 14(8) * 13(9)
T s = pas — pb)
In order to further enhance the dynamic range
2 .
=— (s” + 8-826455) we may distribute the gain K to individual
(s* + 0-630179s + 0-266762) biquads as
(5) = (s — 20s — 23) T(s) =k, t(s) - kyt4(5) - ki £a(5)
T (s — pas — p?)
2 The optimum gain distribution among the three
- (s* + 1:714083) biquad sections of the cascade will be perform-
(s* + 0-:237461s + 0-778873)

ed so as to yield equal-magnitude maximum at

(80)
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the output of all intermediate transfer func-
tions. Assuming max | T{jw)| = 1, and there-
fore | T(jO}}= 0.891251, we obtain K = 0.0098.
To make the maximum of the first stage equal
to the maximum of the overall network, we
determine

__max | T(jew)|

= = 0210712
max [t,(jow)|

2

_ max | T(jw)|
max | k; t;(jwlt,(jo)|

k, max | t,(jw)|

= - — = 0:060907
k, max | t,(jw)t(ju) |

X 762437

k
Tk, k,

Another approach is possible that takes the

1T (jw)]
I L)
089 m

—— Thsoruiical
X X N Espersmantal
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sensitivity into consideration., By selecting a
pair of zeros as far apart as possibie from apair
of poles, it has been shown (Moschytz 1970}
that the function sensitivity S$%® can be re-
duced. Subsequently, the dynamic range will
be maximized through the optimum sequencing
of individual biquads and the gain distribution.
It can be shown that the optimum sequencing
remains the same in spite of different pole-
zero pairing adopted in the second approach.

Example 2

Realize the elliptic filter of the same speci-
fications as in Example 1. Poles and zeros are
to be paired to minimize the function sensiti-
vity, and the biquad notch functions are to
be sequenced so as to render maximum dyna-
mic tange.

The pole of highest Q will be paired with the
farthest zero to generate biguads different from
(16)

N~

Stapbend oitenuation magnified

th)

kHz

Fig. § (a) Active realization of the sixth-order elliptic filter of Example 2,
(b) Magnitude characteristics.

(81)
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b (s) = 52+ 1.243362 of elliptic functions. A flatness matrix has been
! s2+ 0.630179s + 2.66762 introduced to advance a theorem which leads to
2, the maximum dynamic range, The problem of
t(s) = s7+1.714083 (17a) sequencing lowpass notch type biquads has
s2+0,237461s+ 0.778873 been solved, and it has been demonstrated that
_ $24+ 8826455 the generally accn-apt'ed sequfencmg techniques

t3(s) = do not hold for elliptic functions.

5240,047854s+0,999404

The sequencing of biquads for optimum
dynamic range is conducted to produce the
same result as in Example 1
The gain distribution is carried out to further

enhance the dynamic range of the whole net-
work

K,=0.210712, K, =0.459223,
K;=0.101123

Recently an active circuit has been proposed
(Moore et al. 1980) using three operational
amplifiers to realize each lowpass notch sec-
tion in (17). The cascaded circuit and its
magnitude characteristic are shown in figs,
5(ag) and (&), respectively, It has been observed

By using the nature of the frequency trans-
formation, the techniques and results obtained
for the lowpass case may be applied to the
optimization of highpass and bandstop elliptic
filters.

The proposed method may be extended to
switched-capacitor realization of elliptic func-
tions using the procedures like that advanced
mordern technology.
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