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Optic flow is 2D velocity projected on the image plane of 3D velocity of a moving surface element.

In this paper, we survey techniques computing optic flows from an image time sequence of moving objects and tech-

niques determining 31} velocities and

1. Introduction

When objects in the environment are illumi-
nated, light is reflected from surfaces of the
objects.  The reflected light forms a densely
structured optic array at a point of observation.
The optic array may be thought of as a bundle
of narrow cones of light with their apices at
the point of observation and their bases at
distinct surface elements. Each surface element
may produce a distinct light cone from a different
intensity and spectral composition of the light
at each surface element [LEE (1980)].

For moving objects or the observation point
in motion, a light cone from a surface element
moves with some velocity causing change of
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surface structures of the moving objects from the optic flows determined.

the optic array continuously over time, giving
rise to an optic flow field. Formally, the optic
flow field is a field of 2D welocities projected
on the image plane of 3D velocities of surface
elements as shown in Fig |. For convenience
and realism, the optic flow field is described
in terms of and extracted from the changing
pattern of light incident on an image plane
that intercepts the time-varying optic array.
Motion has been conceptualized classically
as an inference from analyzing each static 2D
brightness intensity pattern of image time se-
quence [HELMHOLTZ (1925)].
tion and structure can be perceived directly

However, mo-

from the optic flow field as one psychological
theory indicates [GIBSON (1950abc)]. In that
theory, motion and change are basic for a vision
system while a static intensity pattern is a rare
thing.

In the following, we discuss techniques com-
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Image plane

Fig 1

Geometry of optic flow vector u.

puting optic flow directly in section 2 and
techniques recovering 3D motions and depth
In section 4
we consider techniques determining correspond-

from optic flow in section 3.

ing points from which optic flows can be easily
computed and in section 5 we show techniques
determining 3D motion and depth from corres-
ponding points. We conclude in section 6 .

2. Computing Optice Flow

To compute the optic flow field directly
from a time sequence of image frames. numerous
A technique
can be assigned to one of two categories depend-

techniques have been proposed.

ing upon the requirement of a matching scheme.
The so called ‘non-matching’ approaches, which
do not require the correspondence process, deter-
mine two components of a flow vector based
on the temporal and spatial brightness variation
of the image and motion model. When a surface
models an image brightness, the brightness varia-
tion at an image point can be represented by
Thus, the
‘non-matching’ approaches are sometimes called
gradient based techniques |ULLMAN (1981)].

In their experimental studies of moving tele-

the surface gradient at the point.
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vision images, LIMB and MURPHY (1975) use
frame brightness difference for the temporal
brightness variation and consecutive row pixel
brightness difference for the spatial brightness
variation in estimating the horizontal component
These brightness differences
deserve consideration in a mathematical model

of a flow vector.

of image and motion for the optic flow compu-
tation [CAFFORIO and ROCCA (1976, 79),
FENNEMA and THOMPSON (1979), THOMPSON
and BARNARD (1981), HORN and SCHUNK
(1981)].

A time-varying image can be represented
mathematically by T (x,z,t) where x and z are
the image plane coordinates and t is the time
coordniate. Suppose that the image is displaced
a distance 6x in the x-direction and a distance
Then the in-

(x4 0x 21 &z

&z in the z-direction in a time &t.
tensity at image point
t - dt

at time
can be represented using the Taylor
series expansion as
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where the partial derivatives are computed at the
image point (x, z) at the time t either from a
differentiable image model or using a finite dif-
ference method.

For the optic flow computation, some techni-
ques consider only the linear and constant terms
in (1) while others consider the second or higher
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terms as well. In the following two subsections,
we will first discuss techniques using the linear
and constant terms in (1) and then techniques

requiring higher terms.

2-1. Linear Model of Image and Motion

Neglecting the second and higher order terms
as the error measurement in (1), we have

[ (x+ 0x, z+dz, t+dt)
al dl .

iy o, re, L 2L
Tix,z, t)+ X 275, +vtat

{2)

Assuming that the brightness remains the same
after the motion, we can set 1(x+0x z+0z t+
Ot) =1(x, z, t ). Thus, we have

ox Il

dz O a1
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s s T O (3)

Setting dt— 0, we have a linear relationship be-
tween the two optic flow components u and v as

N
Usx TV T O (4)
. ox . oz
where u = (17{13] e and v= l{[‘}, T

This relationship is called the motion constraint
or the optic flow equation [FENNEMA and
THOMPSON (1979), THOMPSON and BAR-
NARD (1981), HORN and SCHUNK (1981)].

Using the optic flow equation and assuming
optic flow constancy over a moving image area,
a flow vector can be computed [FENNEMA
and THOMPSON (1979), THOMPSON and BAR-
NARD (1981), HORN and SCHUNK (1981)].

CAFFORIO and ROCCA (1976) take the statis-
tical analysis on the optic flow equation and
estimate motion of multiple objects using a
CAFFORIO and ROCCA
(1979) investigate the noise effect on the optic

clustering scheme.

flow equation and consider a hardware imple-
mentation of motion estimation. FENNEMA
and THOMPSON (1979) represent the optic flow
equation in a polar coordinate system and deter-
mine the representative flow vector in a cluster-
ing scheme. THOMPSON and BARNARD (1981)
derive a number of optic flow equations from the
moving image area and determine the flow vector
by solving the equations using the pseudo inverse
method. They compare the pseudo inverse me-
thod to the clustering method. Further discussion
about these two methods is in [DUBOIS et al.
(1981), NAGEL (1981a)]. DAVIS et al. (1983)
use local optic flow component constancy which
follows from the local 2D object motion assump-
tion. From this constraint as well as the optic
flow equation, they propagate, using geometry,
the optic flow along a line segment with two given
flow vectors at both end points.

Since it cannot be said generally which
pixels move with the same velocity, HORN and
SCHUNK (1981) use the global constraint that
the estimated optic flow field should vary smooth-
ly with the image plane coordinates. They com-
bine the smoothness constraint and the motion
constraint by a weighted sum of their error mea-
surements and apply a minimization technique
to the summed error to derive an iterative formula,
The global
causes unrealistic optic flows on stationary image
areas or on the background across the occluding
boundaries of moving areas.

To cope with this difficulty, YACHIDA
(1983) assumes optic flows at prominent feature

smoothness constraint, however,

points like corners such as at the points A, B, ...,
G in Fig 2 and propagates the flow vectors smoo-
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Fig. 2 Propagation of optic flow vectors along the edges.

thly along the connecting edge points between
the corners. He computes the smooth flow vectors
by the same equations derived by HORN and
SCHUNK (1981) and their error measurem-
ents for termination of the propagation process.
He mentions a difficulty in propagating the optic
flow at the intersection (e.g. the point H in Fig 2)
of an occluding and an occluded boundary. He
solves the problem by terminating the propaga-
tion process when the error of newly estimated
flow vector is equal to or larger than the pre-
viously estimated one. In Fig 2, the propagation
of flow vectors to b direction is terminated by the
propagation from d direction at a point between
the points Hand G.

Some researchers use additional constraints
for the optic flow computation, but these are
not absolutely necessary. Some researchers
[NETRAVALI and ROBBINS (1979, 80), PAQU-
IN and DUBIOS (1983)].
with frame-to-frame prediction,

use the motion con-
straint only,
to derive an iterative estimator by minimizing

an error arising from the prediction. They sim-

4

plify the estimator to use the optic flow (displace-
ment vector) for encoding TV signals in real time.
Using the optic flow equation as the linear mea-
surement, the displacement vector is estimatated
as 4 random process by applying Kalinan filter
theory [STULLER and KRISHNAMURPHY
(1983)].

Instead of imposing constraints on optic
flows, we can derive additional constraints by
differentiating the linear model of image and
motion. Specifically, we can differentiate the
linear model of (2) with respect to x, producing

) Ox dzlw v 0 >l ! (371
ox? Ixdz Ixot

Dividing both sides of (5) by ot and setting
G 91/ 9x we have, for 6t ()
I G I(;

u . (R 0 (6
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Thus we derive another constraint (6) in the same
form as the optic flow equation for the two optic
tflow components u and v. Although we use the
x-directional derivative for G, any directional
derivative can be used.

WOHN et al. (1983) use the gradient direc-
tional derivative and some other differential
image features (e.g. curvature and moment) for
G.  However, feature estimation requiring high-
order spatial derivatives is not reliable since the
finite difference operation for the derivatives
tends to amplify the noise. Thus, their estimated
optic flows are often inaccurate. Such flow
vectors are enhanced by a smoothing scheme
which they devised with local 2 ,  rigid motion
to smooth those flow vectors which do not cross
occluding boundaries.

Let P and Q be two optic flow image points
where the optic flow vector is given by v and
In the 2

v, respectively. rigid motion, they
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can compute the rotational velocity @, of a point
Q with respect to a point P by

ATX AV
P IE g
and they define the dilation Dg by
- Es (®)
O Jlar]?

where

Av=y' —y

ar=Q-p

Thus for each pixel in a neighborhood, they can
compute rotational velocity and dilation with
respect to its center pixel position. For the center
pixel, they average the computed values. To
smooth a flow vector at a point P, they choose
its neighbor P’ which has the minimum variation
of computed rotational velocities and dilations
in its neighborhood and update the flow vector

ve at P by

v=v —arx o’ (9)

where « is the computed rotational velocity
at the point P’. In Fig 3, the flow vector at P
is recomputed with respect to P’ because the 3x3
neighborhood of P"has minimum variation of rota-
tional velocities and dilations.

Similar multiple constraints are derived by
TRETIAK and PASTOR (1984). They derive
two independent equations directly from the
motion constraint by differentiating the optic
flow equation with respect to the image plane
coordinates. The same two equations, however,
can be derived from the linear model of image
and motion.

Recently SCHUNK (1984) proved that the

RN
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Fig.3 Updating Optic Flow Vector at P with respect
to Optic Flow Vector at P’.

motion constraint is valid at the image points
of intensity discontinuities at an occluding bound-
ary and pointed out that rotational motion or
perspective projection may cause a change in the
brightness pattern of an image sequence due to
the forshortening effects.

2-2. Nonlinear Model of Image and
Motion

The linear model of intensity variation is
too simple to represent edges and corners [SNY-
DER et al. (1980), NAGEL (1983)]. Thus,
SNYDER et al. (1980) represent (1) up to the
second order at the time t + & as

I(x+ dx, z+ d;, t+ dt)

81 a1
_ 3 oL o a
H(x, z, t40t) + x5+, 5,
. dx? 9] oxdz 9] dzt 9]
2 oxt 2 oxoz T2 oz .
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where the partial derivatives are computed at the
image plane coordinate (x, z) at the time
Setting (x - 0x, z+ 0z t+ 0t) =I(x, z, t).
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(brightness constancy after displacement), they

derive
, , e 2l
. L8 - Ox ot 1 82
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For each pixel, they derive one quadratic equation
(11) in the two unknown displacement vector
components §x and dz. Thus, with the assumption
of displacement vector constancy over a moving
image area (i.e. [(x, z, t)=1(x, z, t +0t)) they
can determine the displacement vector using
clustering.

NAGEL (1983) fits the image mode]l of
(10) over a local neighborhood such that the
partial derivatives are substituted for the fitting
coefficients minimizing the sum of weighted
squared differences between the measurement
and the image model. Using the determined fitting
coefficients and the proper transformation of the
local coordinate system, he derives two coupled
nonlinear equations for the two displacement
vecter components from (11) by minimizing
the sum of the squared differences between the
measurement and the approximating equation.

For the corner points defined by DRESCH-
LER and NAGEL (1982) or KITCHEN and
ROSENFELD (1980), which are shown to be
equivalent in [NAGEL (1983)], the two nonlinear
equations can be further simplified into closed
forms. This method is implemented and applied
to a TV frame sequence and the results, which
show sparse displacement vectors computed, are
reported in [NAGEL and ENKELMANN (1982)].
NAGEL (1983)
combines the above minimization problem with a

To overcome the sparseness.

global constraint called the ‘oriented smoothness’
constraint to estimate displacements for image

area with minor intensity variation. This const-

6

raint imposes smooth variation of displacements
only in the direction perpendicular to the gradient
direction, perpendicular to the gradient direc-
tion allowing significant displacement change
in other directions. Since the intensity gradient

direction usually occurs across an occluding
boundary, the above constraint allows significant
displacement change across such a boundary.
NAGEL and ENKELMANN (1984) implement
the scheme and report preliminary results.

A higher order Taylor expansion than those
in (1) has been used for the optic flow compu-
tation by HARALICK and LEE (1983). They
fit a polynomial function to intensities in a local
3D neighborhood consisting of two image coor-
dinates and one coordinate for time. They deter-
mine optic flow from the fit by locating the

point which matches up with the relative origin.

3. From Optic Flow to 3D Motion and

Depth

Early systems of moving image analysis
concentrated on the extraction of 2D motion
information from an image sequence. LEESE
et al. (1970) and ENDLICH et al. (1971) use a
matching scheme to automatically determine the
cloud movement on the image plane from satel-
AGGARWAL and DUDA
(1975) analyze moving polygonal images to

lite images of clouds.

determine motion of polygone and to segment
the images. With the help of a moving object
model, CHOW and AGGARWAL (1977) analyze
POTTER (1975)
uses the 2D motion information from the ‘cross-

planar curvilinear motion.
shaped’ template for image segmentation.

From the psychophysical and biological
study of a vision system perceiving three dimen-
sional objects, researchers began to concentrate
on the 3D scene analysis containing moving
objects. Some researchers identify moving ele-

ments (tokens) from changing brightness pattern
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to get motion and structural information of a
From the brightness difference
of two image frames, LILLESTRAND (1972),
ULSTAD (1973), LIMB and MURPHY (1975)
obtain motion information and JAIN et. al.
(1977, 79), JAIN and NAGEL (1979ab), JAIN
(1981), YALAMANCHILI et al. (1982) extract
structural information of moving objects as well

moving object.

as their motion information. This differencing
technique is further developed for image segmen-
tation and motion information extraction {JAIN
et al. (1979), JAIN and NAGEL (1979a, b),
JAIN (1981), YALAMANCHILI et al. (1982).
This differencing technique is referred to as a
peripheral process in the survey by MARTIN
and AGGARWAL (1978) where the motion under-
standing is described on three levels, peripheral,
attentive, and cognitive.

Moving object boundaries can be extracted
directly from an image time sequence. HAYNES
and JAIN (1983) define the time-varying ‘edginess’
as the product of the temporal brightness change
and the static ‘edginess’ of the Sobel edge detec-
tor. They detect the moving object boun-
daries by thresholding the time-varying ‘edginess’.
SHAH and JAIN (1984) detect the time-varying
corners in a similar way.

THOMPSON (1980) segments images con-
taining multiple moving objects based on both
the motion and the brightness. He assumes bright-
ness motion constancy at image points from the
same object and uses the motion constraint des-
cribed in the previous section for the Hough
transform to determine dominant motions. He
segments images by merging regions having the
same motion and similar brightness. Motion
constancy is not realistic in general, especially
when the motion involves some rotation.

In a restricted scene domain consisting of
only vertical and horizontal surfaces, WILLIAMS
(1980) searches over distances from the camera

to the vertical surfaces and heights of horizontal
surfaces which result in the best image model
of one frame from the other.

Another approach which GIBSON (1950
abc) pioneered derives 3D motion and structure
information from the optic flow field obtained.
GORDON (1965) shows an optic flow field of
the ground plane observed by a moving observer
and discusses the motion and depth perception
from the optic flow field.

Optic flow field from a pure translational
motion contains information about moving
object surface structure as well as 3D motion.
NAKAYAMA and LOOMIS (1974) show that
relative depth can be determined from optic
flow of an observer in translational motion.
CLOCKSIN (1980) derives a mathematical formu-
la for the surface orientation and the edge dis-
crimination from optic flows generated by a
RIEGER and LAW-

TON (1983) employ an optimization procedure

pure translational motion.

on thresholded difference vectors at disconti-
nuities of the optic flow field to determine the
instantaneous axis of translational motion.

Many researchers study optic flow field from
general motion. KOENDERINK and VAN DO-
ORN (1976) discuss the surface structure from a
differential geometric analysis of optic flow field.
PRAZDNY (1980, 81) studies the curvilinear
motion of an observer and computes the egomo-
tion parameters from at least five optic flow
points. The computation involves solving a sys-
tem of nonlinear (third order polynomial) equa-
tions for the rotational components. He also
computes the depth map from the motion para-
meters determined. LONGUET-HIGGINS and
PRAZDNY (1980) assume the first and second
order spatial derivatives of the optic flow field
are observable and compute the surface orienta-
tion and relative motion at each retinal point.
They also show that the dilation, shear,and vorti-
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city components of the first derivative can be used
for the above 3D information.

BRUSS and HORN (1983) measure the dis-
crepancy between the observed optic flow and
the one expected by the computed motion para-
meters and use a least square technique to deter-
mine the motion parameters minimizing the dis-
crepancy. In the case of pure translational and
rotational motion, they derive equations in closed
form for the motion parameters from the use of
a proper error norm. For the general motion,
they come up with a nonlinear system for the
motion parameters.

Given depth and optic flow at a point, BAL-
LARD and KIMBALL (1983) compute 3D optic
flow at the point and use it for the determination
of motjon parameters in decomposed parameter
spaces. They assume a small external force on
moving objects and compute the acceleration

from 3D flows.

4. Determining Corresponding Points

Optic flow can be computed without dif-
ficulty from the corresponding points in succes-
sive image frames. However, establishing the
correspondence is generally recognized as a quite
difficult task from the consideration of various
factors JAGGARWAL et al. (1981)]. Marr and
co-workers |[GRIMSON and MARR (1979),
MARR and HILDRETH (1980), MARR and
POGGIO (1979) study the correspondence pro-
blem in human stereo vision and develop a com-
putational theory of human vision. ESKENAZI
and CUNNINGHAM (1978) and MORAVEC
(1979ab) derive a set of corresponding points
from two cameras in a stereo arrangement. How-
ever, stereo vision requires extremely high resolu-
tion of the cameras to get an acceptable 3D
AGGARWAL et al. (1981) con-

sider two general approaches to the correspon-

description.

dence problem in their review: one based on ico-

8

nic or picture-like models of an image pattern
and the other based on the structure (identifiable
tokens) present in the image pattern. In the
next subsection, we will discuss matching techni-
ques using a terﬁplate or an iconic model follow-

ed by token matching techniques.

4-1. Template Matching

The first approach usually takes a subimage
(a template) containing a moving object from
one frame and then matches it against the subse-
quent frame based on the chosen iconic represen-
tation. The iconic representation can be a portion
of the image itself, a segmented binary image,
or the edge image. Similarity (Dissimiliarity)
is measured at each possible match and the match
having the maximum (minimum) cross-correlation

(absolute difference sum) is considered to e

the best match. An equivalent process can be
carried out through the use of the Fourier Trans-
form of the iconic representation [LEESE et al.
(1970)}.

This search process usually requires much
computation. To speed up the search process,
several schemes have been introduced. BARNEA
and SILVERMAN (1972) introduce a class of
fast algorithms for image registration which
speed up the search by essentially doing no calcu-
lation for similarity measure on positions when
errors exceed the best match so far. VANDER-
BURG and ROSENFELD (1977) employ a two-
stage template matching scheme in which, at first,
a subtemplate is selected and used to determine
positions which, result in a (dis) similarity measure
above (below) a specified threshold. Next, the
remainder of the template is evaluated at those
chosen positions for the best match. Two diffi-
culties in the two-stage matching scheme are in
selecting the subtemplate and determining a
proper threshold value of (dis) simitarity measure.

HALL et al. (1980) discuss the selection of the
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best subset for matching purposes in the sense of
the minimum correlation length. GOSHTASBY
et al. (1984) analytically derive the threshold
value from the template size and false dismissal
probability. Another scheme for the fast search
is the coarse-fine matching scheme [GOSHTASBY
et al. (1984)] which uses a similar strategy.

To establish point correspondence in multiple
views at the specified positions, TSAl (1983)
presents two methods called the joint moment
method and the window variance method which
result in a sharper similarity measure than the
usual two frame cross-correlation. These methods,
however, require more computation.

The techniques described up to now work

usually
only for image translation. Motion which pro-
duce a scaling or rotation of images can introduce
much more computation [ALTMANN and REIT-
BOCK (1984)].

4-2. Token Matching

Instead of matching picture-like models,
one can identify a set of structures in one image
frame and then search the corresponding struc-
tures in the subsequent image frame. Several
researchers consider the object boundary struc-
ture for the match. POTTER (1975) generates
a ‘cross-shaped template’ at a point by calculating
the distance from the point to the closest object
boundary in the row and column directions,
and searches the corresponding point, in the
next frame, at which the same size of the template
is computed. MARTIN and AGGARWAL (1978)
segment boundaries detected from both image
frames into primitives such as straight lines and
circular arcs and match a primitive of one frame
against those of the other frame based on the
length and curvature of the primitives. Using
the generalized Hough Transform of an object
boundary in one image frame, one can find the
instance of that boundary in the subsequent

frame [BALLARD (1981)].
Locating distinctive features present in
images and imposing constraints on them, one
can establish the correspondence of the feature
points. ENDLICH et al. (1971) locate the bright-
ness center by an ISODATA technique in suc-
cessive image frames and establish the corres-
pondence between sets of the brightness centers
by assuming constant brightness motion. REN.-
EDE and ROSENFELD (1980) apply a relaxa-
tion algorithm to establish the correspondence
between sets of points selected by hand from two
image frames with the assumption of the global
brightness displacement constancy. BARNARD
and THOMPSON (1980) locate the feature points
in an image pair by applying the Moravec interest
operator |[MORAVEC (1977)] and assign an
initial match probability to each pair of feature
points which lie within some specified distance
of each other allowing for the possibility that
the feature may not exist in the second image.
They refine the probability for each pairing at
a feature point iteratively by applying a relaxa-
tion algorithm such that the probability for a
pairing is updated by the supporting evidence
of similar pairings in the local neighborhood.
DRESCHLER and NAGEL (1982) make some
modifications in updating the probability by
considering both evidence of the support and
contradiction in the local neighborhood. At
each point, the pairing assigned the highest pro-
bability is selected for the correspondence.
ULLMAN (1979) introduces a simple cost
function to compare possible matches between
two dot patterns and establishes the correspon-
dence by minimizing the cost function. He shows
that minimizing the cost function is optimal
if the dots in the pattern move independently.
PRAGER and ARBIB (1983) assume several
feature types on dot patterns and they use a
feature metric between feature types to define
a distance between any two position-feature

9
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pairs. Using this distance, they define an attrac-
With the

help of the attraction function and with the

tion function for a nearest neighbor.

assumption of local consistency of displacement,
they can establish the correspondence.

Some other structures present in images
AYALA et al. (1982) segment
image frames and establish correspondence be-

can be used.

tween sets of segments based on the similarity
of the segment feature values. They use features
such as segment position, size, intensity, and
area ratio. Since incorrect image segmentation
from noise and occlusion introduces incorrect
feature values, ROACH and AGGARWAL (1979)
suggest using multiple methods arranged in a
hierarchy. JACOBUS et al. (1980) encode boun-
dary, region, and surface information in a graph
form using a primitive called the half chunk and
use a graph matching scheme to establish the
correspondence.

The problem with most of these techniques
is that they must employ some combinatorial
computation to establish the match. This kind
of computation is very expensive. Furthermore,
these techniques require preprocessors to extract

proper structures from image frames.

5. From Corresponding Points to 3D

Motion and Depth

To determine 3D motion and structure of
moving objects, a set of corresponding points
can be used. ROACH and AGGARWAL (1980)
require two known perspective views of five
non-coplanar points in space to set up the pro-
blem and come up with 18 nonlinear equations
in 18 unknowns. They solve the system of non-
linear equations iteratively with an initial guess
for each unknown by using a modified finite
difference Lavenberg-Marquetdt algorithm [BRO-
WN and DENNIS (1972), LAVENBERG (1944)] .

From experiments with noisy views of 3D points,

10

they find that they obtain more accurate results
with considerable overdetermination (two views
of 12 or 15 points, three views of 7 or 8 points).

When the surface structure of a moving
object is known, the motion estimation problem
can be formulated differently. For a known
planar surface, TSAl and HUANG (1981) define
eight pure parameters which characterize the
planar surface and can be uniquely determined
by a linear method given two perspective views
of four or more points. They derive a sixth order
polynomial of one variable whose coefficients
are expressed by the pure parameters and de-
termine the motion parameters by solving the
polynomial. Instead of solving the sixth order
polynomial, the motion parameters can be deter-
mined by computing the singular value decom-
position of a 3x3 matrix containing the pure
parameters TSAI et al. (1982). For a known
curved surface, TSAI and HUANG (1984) show
that two perspective views of seven points on the
curved surface are sufficient to determine the
3D motion parameters. YEN and HUANG (1983)
project image points centrally on the unit sphere
at the origin and use the projected points in
correspondence to determine the 3D motion
parameters and their 3D positions. They ana-
lyze three types of motions; pure translation,
pure rotation, and general motion, and inter-
pret the uniqueness of the motion solution by a
simple geometry of the points on the sphere.
Unfortunately, we can not find any experimental
results, especially of noisy views, in their paper.

NAGEL (1981b) uses two coordinate systems;
one attached to the camera and the other to a
moving object. He derives a relationship between
known image point coordinates and unknown
object point coordinates and sets up a minimiza-
tion problem from the relationship and sets of
image points in correspondence. DRESCHLER
and NAGEL (1982) and NAGEL (1983) apply
this technique to a sequence of feature (corner
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point) images obtained from a street scene con-
taining a moving taxicab and approximate the
cab by a polyhedra.

MARTIN and AGGARWAL (1983) assume
orthograhic projection of images and develop a
scheme describing a 3D object from multiple views
of its occluding object boundary. They obtain
the object boundaries from the thresholded bri-
ghtness image. Their 3D description is a bounding
volume approximation (to the actual object)
represented by a volume segment data structure.
AGGARWAL (1983) reviews techniques of deriv-
ing 3D descriptions from image sequences.

6. Conclusion

Two categories of techniques computing
optic flows have been discussed. The one which
does not require the correspondence process
computes an optic flow vector based on the tem-

poral and spatial brightness variation of the
image and motion model. The other one deter-
mine the optic flow from the corresponding points
in successive image frames. However, establishing
the correspondence is quite a difficult task dealing
with massive amounts of image data.

Techniques extracting information (3D velo-
city and surface structure) from either optic flows
or corresponding points usually set up and solve
a minimization problem which is formulated
for the motion or structure information using the
relationship derived.
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