On the E-optimality of different blocksize designs

Kwang Young Lee*

ABSTRACT

Constantine (1981) extended the results of Takeuchi (1961) by adding some new blocks to certain known E-optimal block designs. But they are confined to equal blocksize designs. In this paper we again generalize them to different blocksize case. By augmenting some known E-optimal block designs having blocks of equalsize with blocks of different sizes, additional E-optimal block designs are obtained.

1. Introduction

Let d be a block design with b blocks and v treatments. Then the information matrix of a block design d is defined as follows;

$$C(d) = \text{diag } [r_1, r_2, \dots, r_v] - N \text{ diag } [k_1^{-1}, k_2^{-1}, \dots, k_b^{-1}]N'$$
 (1·1)

where r_i 's are replicates of treatments, k_i 's are the sizes of blocks, and N is the incidence matrix whose entry n_{ij} gives the number of times treatment i occurs in block j.

We see that the matrix C(d) is symmetric, non-negative definite and has zero row sums. A design d is said to be connected if all contrasts of treatment effects are estimable. It is known that a design d with v treatments is connected iff rank (C(d)) = v-1. In this case we may assume the eigenvalues of C(d) are

$$0 = \mu_0(d) < \mu_1(d) \le \mu_2(d) \le \cdots \le \mu_{v-1}(d)$$

Let $\Omega(v, b, k)$ denote the class of all connected block designs having v treatments

^{*} Department of Mathematics, Ajou University, Suwon, Korea.

[†] This research was supported by a grant from the Korea Science and Engineering Foundation, 1986.

arranged in b blocks of size k. A design d^* is said to be E-optimal in $\Omega(v, b, k)$ if among all designs in $\Omega(v, b, k)$, it minimizes the supremum of the variance of least square estimators for normalized treatment effect contrasts.

With the aid of Ehrenfeld (1955), we have a criterion for E-optimality; A design d^* $\epsilon \Omega(v, b, k)$ is E-optimal in $\Omega(v, b, k)$ iff

$$\mu_1(d^*) > \mu_1(d)$$

for any $d \in \Omega(v, b, k)$, where $\mu_1(d)$ denotes the minimum positive eigenvalue of C(d).

If d is a combined design of designs d_1 and d_2 under the same treatments, then clearly

$$C(d) = C(d_1) + C(d),$$

and

$$\mu_1(d) \ge \mu_1(d_i), i=1,2$$
 (1.2)

Using the property (Rao(1973))

$$\mu_1(d) = \inf_{\xi} (\xi' C(d) \xi),$$

where ξ is a normalized $v \times 1$ column vector with zero column sum, the following Lemmas can be shown in a similar way to Constantine (1981) and Jacroux (1982).

Lemma 1: Let $C(d) = (c_{ij}(d))$ be the $v \times v$ information matrix of design d. Then

$$\mu_1(d) \leq \frac{c_{ii}(d) + c_{ij}(d) - 2c_{ij}(d)}{2}, i \neq j.$$

Lemma 2: Let C(d) be as in Lemma 1, and M be a proper subset of the treatments $\{1, 2, \dots, v\}$, say $M = \{1, 2, \dots, m\}$, $1 \le m < v$. Then

$$\mu_1(d) \leq \frac{v}{m(v-m)} \sum_{i,j \in M} c_{ij}(d)$$

2. Main Retsults

Readers may refer to Raghavarao(1971) for the usual terminologies and notations on block design throughout the paper. Let $\Omega(v; b_1, b_2; k_1, k_2)$ be the class of all connected block designs having v treatments arranged in b_i blocks of size k_i for i=1,2.

The two theorems given in this section are extensions of the results proven in Constantine (1981) and Jacroux (1982).

Theorem 1: Let $d_1^* \in \Omega(v, b_1, k_1)$ be a BIB design and $d_2^* \in \Omega(v, b_2, k_2)$ be an arbitrary binary design based on the same treatments with d_1^* . If $k_1 \ge k_2$ and $b_2 k_2 < v$, then the combined design $d^* = (d_1^*, d_2^*)$ is E-optimal in $\Omega(v; b_1, b_2; k_1, k_2)$.

Proof: Since d_1^* is a BIB design,

$$r(d_1^*) = b_1 k_1 / v$$
 and $\lambda(d_1^*) = b_1 k_1 (k_1 - 1) / (v(v - 1))$

and we can see that

$$\mu_1(d_1^*) = \frac{r(d_1^*)(k_1 - 1) + \lambda(d_1^*)}{k_1}$$

So by $(1\cdot 2)$, it follows that

$$\mu_1(d^*) \ge \frac{b_1(k_1-1)}{v-1}$$
 (2·1)

Now let d be any design in $\Omega(v; b_1, b_2; k_1, k_2)$. Then d can be represented by $d = (d_1, d_2)$ for some $d_1 \in \Omega(v, b_1, k_1)$ and $d_2 \in \Omega(v, b_2, k_2)$. Hence $C(d) = C(d_1) + C(d_2)$, and so

$$r_i(d) = r_i(d_1) + r_i(d_2), i=1,2,\dots,v$$

and $\lambda_{ij}(d) = \lambda_{ij}(d_1) + \lambda_{ij}(d_2), i \neq j.$

If we let $r_{i_0}(d) = \min_i r_i(d)$, then by the condition $\frac{b_2 k_2}{v} < 1$ we get $r_{i_0}(d) \le r(d_1^*)$ since $r_i(d)$ is the replication of the *i*-th treatment. Then from Lemma 2 with m=1 and the condition $k_1 \ge k_2$, it follows that

$$\mu_1(d) \le \frac{b_1(k_1 - 1)}{v - 1}$$
 (2·2)

The result now follows from $(2 \cdot 1)$ and $(2 \cdot 2)$.

Theorem 2: Let d_1^* be a group divisible designs with parameters v=mn(m) groups containing n treatments each), $b_1, k_1, \lambda_1, \lambda_2 = \lambda_1 + 1$, and $d_2^* \in \Omega$ (v, b_2, k_2) be an arbitrary design based on the same treatments with d_1^* . If $k_1 \ge k_2$ and $b_2 k_2 < v-m$, then the combined design $d^* = (d_1^*, d_2^*)$ is E-optimal in Ω $(v; b_1, b_2; k_1, k_2)$.

Proof: Since d_1^* is a group divisible design,

$$r(d_1^*) = \frac{b_1 k_1}{v}, \quad \lambda_1(d_1^*) = \left[\frac{b_1 k_1 (k_1 - 1)}{v(v - 1)}\right]$$

where [] denotes the integer part of the number, and

$$\mu_1(d_1^*) = \frac{r(d_1^*)(k_1-1) + \lambda_1(d_1^*)}{k_1}$$

Since $b_2k_2 < v-m$, there exist at least 2 treatments i, j in d^* such that

$$c_{ii}(d^*) = c_{jj}(d^*) = \frac{r(d_1^*)(k_1-1)}{k_1}, \ c_{ij}(d^*) = -\frac{\lambda_1(d_1^*)}{k_1}$$

from (1, 1).

Then by Lemma 1,

$$\mu_1(d^*) \leq \frac{r(d_1^*)(k_1-1) + \lambda_1(d_1^*)}{k_1}$$

Since $\mu_1(d^*) \ge \mu_1(d_1^*)$ by (1·2), it follows that

$$\mu_1(d^*) = \frac{r(d_1^*)(k_1-1) + \lambda_1(d_1^*)}{k_1}$$

Now let $d \in \Omega(v; b_1, b_2; k_1, k_2)$ be arbitrary. Then $d = (d_1, d_2)$ for some $d_1 \in \Omega(v, b_1, k_1)$ and $d_2 \in \Omega(v, b_2, k_2)$.

Here we consider the two cases as follows;

- (i) there exists some $r_1(d)$ such that $r_i(d) < r(d_1^*)$,
- (ii) $r_i(d) \ge r(d_1^*)$ for $i = 1, 2, \dots, v$.

In case (i), by the condition $k_1 \ge k_2$ and $c_{ii}(d) = c_{ii}(d_1) + c_{ii}(d_2)$ we can show

$$c_{ii}(d) \leq \frac{(k_1-1)(r(d_1^*)-1)}{b_1}$$

Then by Lemma 2 and some algebra works analogous to those of Constantine (1981), we have

$$\mu_1(d) \leq \frac{v}{v-1} \frac{(k_1-1)(r(d_1^*)-1)}{k_1} \leq \frac{r(d_1^*)(k_1-1)+\lambda_1(d_1^*)}{k_1}$$

Therefore $\mu_1(d) \leq \mu_1(d^*)$ in this case.

In a similar way, case (ii) is proved.

References

- (1) Cheng C.S. (1980). On the E-optimality of some block designs. J. of Roy. Stat. Soc., Series B, 42, 199∼204.
- (2) Constantine, G.M. (1981). Some E-optimal block designs. Ann. of Stat., 9, 886~892.
- (3) Ehrenfeld, S. (1955). On the efficiency of experimental designs. Ann. Math. Stat., 26, $247\sim255$.
- (4) Jacroux, M. (1982). Some E-optimal designs for the one-way and two-way elimination of heterogeneity. J. of Roy. Stat. Soc., Series B., 44, 253~261.
- (5) John, P.W.M. (1971). Statistical Design and Analysis of Experiments. Macmillan, New York.
- (6) Raghavarao, D. (1971). Constructions and Combinatorial problems in design of experiments. John Wiley & Sons, New York.
- (7) Rao, C.R (1973). Linear statistical inference and its applications. John Wiley & Sons, New York.
- (8) Rao, C.R. and Mitra, S.K. (1971). Generalized inverse of matrices. John Wiley & Sons, New York.
- (9) Searle, S.R. (1971). Linear models. John Wiley & Sons, New York.
- (10) Takeuchi, K. (1961). On the optimality of certain types of PBIB designs. Rep. Stat. Appl. €Res. JUSE, 8, 140~145.