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ABSTRACT

Many procedures for deriving the Moore-Penrose inverse X* have been developed, but
the explicit forms of Moore-Penerose inverses for design matrices in analysis of variance
models are not known heretofore. The purpose of this paper is to find explicit forms
of X* for the one-way and the two-way analysis of variance models.

Consequently, the Moore-Penerose inverse X* and the shortest solutions of them can

be easily obtained to the level of pocket calculator by way of our results.
1. Introduction

The application of generalized inverse matrices to linear statistical models is of relati-
vely recent occurrence. In particular, the Moore-Penrose inverse of a matrix plays a sig-
nificant role in statistics. In the statistical areas of analysis of variance and regression,
this matrix characteristic is the basis for much of the mordern development. Many sta-
tisticians [e.g., Lowerre(1982), Kempthrone(1980), and Kennedy and Gentle(1980)] co-
ntributed to deriving the Moore-Penrose inverse X* for the special statistical models.
But X* is not easy to compute, especially when X has many columns, and by this rea-
son, the type of X* used in ANOVA is not known up to now.

The purpose of this paper is to provide general explicit forms X* for the classificato-

ry models and shortest solutions. Also ANOVA tables are simply constructed without
statistical computer package by use of the Moore-Penrose inverses.
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2. The Moore-Penrose Inverse

There is the special generalized inverse, X*, of X called the Moore-Penrose inverse
[Penrose(1955)]. It is the solution of the following equations:

i XX+ X=X,

i) X*XX*=X",

(iif) XX* is symmetric,

(iv) X*X is symmetric. 2.1
A procedure for deriving X* is to find X’XU=X and XX' V=X and then X*=V"XU.

The following theorem will prove V' XU become the Moore-Penrose inverse of X,

Theorem 2.1 If X*=V"XU such that X’ XU=X’ and XX’'V=2X, then X*is the Moore-
Penrose inverse of X that is X* satisfies the four conditions of (2.1).
Proof. From X’ XU=X" and XUX=X, XU is unique and symmetric, and also from
XX'V=X, XVX =X, X’V is unique and symmetric. Therefore,

1) X(VXUD)X=XUX=X.

(i) (VXOHX(VXU)=V'XV'XU=V"XU.

(i) X(V'XU)=XU, symmetric,

(iv) (V'XU)X=V'X, symmetric.
Thus X*=1"XU is the Moore-Penrose inverse of X. To see V'XU is unique, let U,
and U, be solutions to X’XU,=X’, i=1,2 and V, and V, be solutions to XX' V=X,
i=1,2. Since XU,=XU, and X'V,=X"V,, so V/XU,=V,XU,=V,’XU,.

The Moore-Penrose inverse is useful in experimental design and the analysis of covari-

ance because the normal equations will not have a unique solution.

Definition 2.1 Given a consistent but overdetermined s(ystem of equation y=Xp, a
solution of this system b is called a minimum-length solution or shortest solution if b
has the smallest euclidean norm among its solutions.

The shortest solution of the normal equations can be easily obtained and this solution

is b=X%*y. To show this result, the following theorems and corollaries will be useful.

Theorem 2.2 (X’ X)+=X*(X")".
Proof. To show X*(X*)’ is the Moore-Penrose inverse, X*(X*)’ should satisfy the four
conditions of (2.1).
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Q) XXX (X)X X=XXXTXV"XX=XX"XX"XX=XX"XX=XX.
(i) XX’ XXX (X)) =Xt XX XX (X)) =X (XY".
(i) XXX (X =X (X)X (X*)' =X (X*)'=X*X=(X"X)".
iv) Xt(XH' X X=X XX X=X X=(X*X)".

Hence X*(X*)’ is the Moore-Penrose inverse of X'X. 7

Corollary 1 (X%)'=(X")*
Proof. We have X*=V'XU, so (X*)'=U'X"V. If we transpose the relations (i), (ii),
(iii) and (iv) given in (2.1), we can obtain

) X (X)X =X,

(i) (X)X (X)'=(X"),

3di) XX+=(XNH'X,

(iv) X* X=X (X"
Hence (X*) = (X"". 7
Theorem 2.3 If Ax=>b is consistent, then the shortest solution is x=A%h.

Proof. Suppose x satisfies Ax=>b. Consider A*h, then of course AA*b=>b. Write
x=A*b+ (x—A*D) =u+v, where u=A*b, v=x—A*h.

Then
Xx=w'ut2u'v+v'v.
But
wy=bA" (x—A*b)
=x"A’AY (x— A*D)
=x"ATA(x—A*b)
=x'A*(Ax— AA*D)
=x"A*(b—b)=0.
Thus #w'u<x’x. 7

Corollary 2 Consider the normal equation X’Xb=X'y, then shortest solution is s=X*y.
Proof. We already knew that (X)*=(X*)" and (X’X)*=X*(X")".
Also the normal equations are consistent. By the result of Theorem 2.3, the shortest

solution is

b= (X'X)* Xy=X* (X)X Y=X"(X") X'y=X*XX"y=X">.
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3. The Moore-Penrose Inverse for the Classificatory Models

A. The one-way unequal classification.
The equation of the model for the one-way classification is
Yu=p+ta;+e,
where i:=1,2,+-,a and j=1,2, -+, #..
The general matrix formulation of the model for the one-way classification is

y=Xb-+e,

where b'= (1, @y, -, @)y 3= (Jiy, Yizs s Yans)> X= (1w, So*1n), * represents a dire-
i=1
ct sum of matrices(e.g., Searle 1982, Sec. 10.6) and N:ZIZ #i.

Result 3.1.1 The Moore-Penrose inverse of X for the one-way classification is

1 1 o1 -

’ ’ ’

L 2y, .
;s 1, i na 7. 1

a ., 1 1 .,

n11"‘ nzlnz 7141"“
1 1

-1 . , a ., 1 .,
X+(a+1)xN a+1 n, 17, ", 1% - — . 1

1 ., 1 ., a .,
3 nlln, nzlnz nalna

The detailed explanation for this derivation is given in Appendix A.1l.

Result 3.1.2 The shortest solution of the normal equations for the unequal one-way cla-

ssification is

= 5/
br=Xty=
¥ ”gl:yi. /(a+1)

- - I’
where i=1,2,--,a, and ¥ represent the average of the observations under the 7th tre-

atment.

B. The two-way classification with no interaction and % observations per cell.

The equation of the model for the two-way classification with no interaction and %
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observations per cell is
Yip=p+ai+fi+eus,
where i=1,2,-,#, j=1,2,+¢ and p=1,2, k.
The general matrix formulation of the model for the two-way classification with no
interaction and k2 observations per cell is

y=1wm+X,r+X.c+e,

where

7'/: (al) Azy ey ar)y

¢'= ({817 R ﬁc)’

Xr:g: +1ck,

X:(Zu s T Zl) .
and N=rck.

First, the case of one observation per cell in two way classification with no interaction

will be discussed.

Result 3.2.1 The Moore-Penrose inverse of X for the two-way classification with no

interaction and one observation per cell is

X+(r+c+l)x(rc) N 1::/ lc, lc, b lc, -
er+r—1 .,  (c+D ., e+ ., ... _ (D .,
— 1. — 1. ~—C—~lc z 1.
—(etD ., crrr=1,, (D, . _ (D 4,
_ 1 ¢ c c c c ¢ c <
cr+c+v .
_le+) .. eHD) o, (c+1) 4. ... cr+r—1 .,
c lc c lc - c 10 c lc
B K K K K
r+1

where K=(c+2) I. — Je and /. is ¢xc¢ matrix. The detailed derivation for this

7
result is given in Appendix A.2.

Result 3.2.2 The shortest solution for the two-way classification with no interaction and
one observation per cell is

Y./ (ctr+o)
c

bt — X+y—| Yi/c— il Y. /(rc+r+c)y i=1,2,-,7

Y./r— “;1 Y. /@ct+r+co) j=1,2,-¢
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Next the case of two-way classification with no interaction and without interaction

and % observations per cell will be represented as follows.

Result 3.3.1

The Moore-Penrose inverse of X for the two way classification without interaction and

k observations per cell is

- 15’ 15’ eee 15’ -
cr+r—1 ., , ,
+c 1 1, - Hc—l 1y el _ cJCrl 1y
_c , +r—1 ., ,
_'ngs ﬁ’g_lls R —— Cl_l 15
Xt=
’ + ’ - ’
_ chrl 1, _ ccl 1, _cL+c7' 1 1s
- Hl Hl Hl _h
vl -y -l
r—1 ., er+vr—1 ., . _r=1.,
H= 7 1s p 1 71
r— ’ _ ’ 14 r— ’
_ rl Ls _7’71 1s ﬂ;—lh il

where 1, is ckx1 matrix and 1; is ¢x1 matrix. The detailed derivation for this result

is given in Appendix A.3.

Result 3.3.2 The shortest solution for the two-way classification with no interaction and

E observations per cell is

Y./ (R@etr+0)
c+1 Y

b= Xty= Yi”/(Ck)— c k(76+7+c) Z.:1,2, ree, ¥
r+1 Y. .
—Y,/(i’k)— 7 k(70+7’+6) ]_‘19 2,4 C .

C. The two-way classification with interaction and unequal number of observations in
the cells without missing observations.
The general consideration for this model is
Yisp=U+a:+Bit+ aBii+€iin
where i=1,-,7, j=1,---,¢, p=1, -, n:, where n;;>0.
The general matrix formulation for the two way classification with interaction and

unequal numbers of observations in the cells without missing observations is



52 Byung Chun Kim and Jang Taek Lee
y=lw+Xr+X.c+ X, rc+e,
where 7' = (ay, -, ar), ¢'=(B1, B,

7¢'= (afi1, Bz, =y afre),
X’:Zr+1ni.7
i=1
Xc’*_‘(%: +1/nm 2::1: +1/nm ) iZl * l/nn'>$
S ==
= =1 = =14=1

Before discussing about the unequal numbers of observations case, first we will consider

the case of one obhservation per cell.

Result 3.4.1 The Moore-Penrose inverse of X for the two-way classification with inte-
raction and one observation per cell is

1/7'6' B

7
71, ’ —1Veoron

-1 i r1’ — 1o

. 1
X =DerD

_lc,(r~|) rlc/

/4
Zl e+ DI1—])

Pt DI-Jd] =5 A+ DL-T)

— e+ DA | i+ L—T] _21 A+ DL}
ro1 J
—§+{(C+1)1c—fc} ’ r{i(c+1D1.—J}

- |
—i

r
where Zﬂj (el +8]) = (al.+b]., -+, al.+b].) c.er. The detailed derivation for this result
is given in Appendix A.4.
Using this result, the shortest solutions of the two-way classification with interaction

and one observation per cell can be easily obtained as follows.

Result 3.4.2 The shortest solution of the normal equations for two-way classification

with interaction and one observation per cell is
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br=Xry=" 1
I ICESVRE
611 Yo — (r+1§(6+1) Y. f
T e
YT 7'1+1 i cl+l yi ¥ (r+1)1(c+1) v |,

Now using previous case, the case of k observations per cell can be extended as follows.

Result 3.5.1 The Moore-Penrose inverse of X for the two-way classification with int-
eraction and # observations per cell can be obtained through the following algorvithm.
Step 1. Choose X* be Moore-Penrose inverse for the two-way classification with inter-
action and one observation per cell
Step 2. For i:=1,7c+¥+c+1 do
For j:=1,7c—1 do
(1) Divide each element a;; of X by &, say it ai*.
@) Insert a;* (k—1) times between a;;* and @i, i41.
For j=rc divide a;; by k.
(3) Insert a;;* (k—1) times at the right side of ai;.

(* terminate i-th row operation and try (i+1) -th row operation until i=rc--7-+c+1%)

Result 3.5.2 The shortest solution of the normal equations for the two way classifica-

tion with interaction and % observations per cell is

br=Xty=" 1
R+ (e O

1 o 1
E(c+1) Yo T R ¥1) €+ 1) Yo

1 1
EG+D 2T RGID D O

11, 1 AT S
k yu. k(C:-l) yz.. k(?’—rl) y.J. + k(7+1) (C"‘l) Y...
for i:l,-..’rj-_—l,...’c .

Finally, we can find the results of unequal observations per cell.

Result 3.6.1 : The process of finding the Moore-Penrose inverse of X for the two way
classification with interaction and #;; observations per cell is the same as that of & obs-
ervations per cell except using #;; instead of k in Result 3.5.1.

Result 3.5.1 and result 3.6.1 can be obtained through similar procedure of Appendix A. 4,
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Result 3.6.2 The shortest solution of the normal equations for the two-way classifica-
tion with interaction and #:; observations per cell is

r=Xry=" , . N
T u*

i=1 j=1

c

N T
F+Dc+Dny; 77

r

,
= TTD C+my,; ¥

c

1

(Xp*

AR =TT e D Y

c 1 .
R CTD D Y T2 e R D e Dag Y ¢ B

*

re c p
r+1) (c+1)n,, yi’q_% r+1) (cF1) 1,5 Vi

r

C
2 G+ c+Dm, i

+ 3

i%p j*q

1 ) .
T+1) (c+1)n; Vit (aB)*sq

Remark: The shortest solution can, of course, be obtained directly working the constra-

ined least square problem: minimize »b subject to X' Xb=X"y.
5. Conclusions

Several results completely characterize the Moore-Penrose inverse of Matrix for one-
way, two-way, and two-way classification with interaction models. Also the shortest sol-
utions of their models are obtained. Our procedure is applicable to the nested design, and
Latin square design. In the case of missing cells, it is not easy to obtained explicit form

of the Moore-Penrose inverse.
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APPENDIX A

1. Derivation of the Moore-Penrose inverse of X for the one-way classification.

To get X*, first find V such that XX'V=X.

‘—2./11 ]12 ]la—

(XX/)NxN: ]21 2]22 f2a

e a2

?
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where J:; is the #:X#; matrix whose every element is 1. To find a non-singular principal
minor of order a (=rank X), select first row and column element from each Ji;.

Then this matrx is Mux.=I+/. Thus, M becomes

71
M=1 a+1]
- -1 -1 - =1
1 —1 a -1 - -1
T a+1

-1 -1 -1 - a
Let X* be the matrix selected the first row from each m:(i=1, 2, -, @) in the matrix X.
Then X* becomes as follows

X*ax(a+l): [lﬂy Iaxa]-

Thus
M X*=[I—1/@+1))J] [la Lexal
=(1/(a+1)) [l (@+1DI-]]
= V*(say),
then
| S P
(V/*X*)(a+1)x(a+1): a+1 ‘L (a+1)l___] [Lzylaxa:l
1 [a 1a
= aHL le (@+DI-7 ]
=V'X.
Next, find U such that X’ XU=X".
N o own on, e o
"y ", 0 ves 0
XX=tn, 0 n, - 0
n. 0 0 S (AN

To find a non-singular principal minor of order a, select a row and coulmn from XX,

Then this matrix is

1y 0 s 0
Baxa: 0 nz .‘. 0

0 0 P na_ R

then
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1m0 0
Bi=| 0 1/#,

_0 0 e 1/0a_

Thus,
h I o N
0 ¢ , ,
U:(X'X)"X':Lé B (Zl) = (i*% ) E
i=1 : =1 " ]
Therefore,

¢
a 1. /
X arpv=V'XU= (1/(a+1))[1a (a+1)1—] J (i+l1 )
> 1

1., L. 1., 7
nll n n21 nz nln.
a ’ — 1 7 — ]- 7
T 1 n, 1 a2 . 17
__ 1 1 ., a ., 1 .,
- a_l’_l _7117” —hjl ny *°*° - na lna
1., 1, a .,
e 1%, i, 1, y 1.

2. Derivation of the Moore-Penrose inverse of X for the two-way classification with no

interaction and one observation per cell.

To find X*, first we should find V such that XX'V=2X.
d+2] I+ ] - I+ ]
I+1 jJ+27 - I+ ]
(XX) rerre= . .
A+ ] I+ ] - I4+2],
where I and J are ¢ X ¢ matrix.
To find a non-singular principal minor of order #+c—1 (=rank X), select first ¢ row
and column and first row and column from next each # row and column. Then this matrix is
3 21,7 212':‘

M(r+c—1)x(r+c—1):{211 11+2]1 ]Sl
21, L L+2],
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where
i is (¢~ x1 matrix,
1;is (r—1) x1 matrix,
I, is (¢c—1) X (¢c—1) matrix,
I, is (r—1) X (*—1) matrix,
Jiis (c—1) X (c—1) matrix,
Jois (r—1) X (r—1) matrix,

and Jais (r—1) X (c—1) matrix,

Since M™! exists, MM =1 as

3 21, 21, a a1, asl’, 1 ¢ ¢
21, I1+2]1 ]3' } a1, b211+62]l bsja' = ¢ I ¢
21, ]3 Iz+2]2 Layl, bg]s d312+€3 ]2 ¢ ¢ I

where the constants @i, @, @s, b, by, €5, ds and e, are to be determined. Thus M~! is given

by

1’3cr——r—c —2r1y’ —2cl,’ -
M‘I:——‘lf —2r1, (cr+r+o)l,— @+ Js J

Y +¥-+C
L—2c1, Js (cr+r+o)l,— (c+1) ).

Similarly to the previous section, letX* be the matrix that is selected the first ¢ row in

i=1 and a first row in i=2 from the matrix X;;. It becomes

1 1 ol 1 qﬁ}
X*:\ill 1, ¢ 1 [1;

JE I, 1. ¢

then
(M_IX*)(1+C—1)x(r+c+1)
T—cr+rdc cr+v—c —2c1,’ cr--c—vr —2r1)
1 ,
S S — I
rirTe 71, 1 Js r+n1, (Cit:ilc))]:
cl, —(c+1D1, (ert+r+o)l; 1. Js
_ —(c+1) /. _
=V*(say)
V' X=V*X*
T—cr+ritc rly cly 7
cr+r—c 1/ —(c+1D1 ) 5
1 1 o] 1
=— | —2cl J (cr+r+o)l,
cr+r+c * ’ —(c+1) ] {11 1; ? 1 I
cr+c—r - @F+D1 1, . 0 I, 1. ¢
—2rly  (er+r+o)l, Js
_ —(+DJY -
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cr c Clzl r rll, _
c cr+r—1 —(+D1, 1 1,/
- ?riw cl, —(c+D1, (c_rz;f:i)r}z[z 1. Iy
r 1 1, cr+c—1 —(r+D1)
71, 1 J —(r+1)1, (cr+r+o)l,
- —(r+-DJY

Next, find U such that X’ XU=X".

“re c cl,’ r1s"

c c ¢ 131

,
X' Xerrornomer=|  seeteeeenesienns

cl, ¢ ;CI: ]4’5
*ls  1s ]4 rly

...................

where 1, is ¢x1 matrix, [; is ¢xc¢ matrix, and J, is ¢ x (#—1) matrix.

To find a non-singular principal minor of order r+c—1, select the last (* +c¢—1) rows
and columns.

1 1 17,
B LCIZ fa’] » clt o/ L
Tl nlo e BRE L=l
o’ r AT ey 0

where J; is a ¢xc¢ matrix, all elements of which are unity.

U(r+c+1)xrc = (X/X) —X,

WL L 1y
L' ¢ ¢ ¢
=[0 0 ¢ ¢ ?
0 0 ‘;5 13/ ¢ ¢
B—l
b o ,
$ ¢ ¢ 15
_]3 13 [3 13
-0 0 0 0 0 -
0 0 0 0 0
-t Ly $ ¢ |
-l Ly 6 ¢
1., 1.,
.M M M M M
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r—1

where M=~},—I3+

Js.

Therefore, we can get X* by X*ieynxre= V' XU.

144

) 1’ 1.’ 1.7 1.’ -

er+r—1 ., _ (+1) ., _ +D ., . _ D 4

— Y 1. - 1. c 1. ¢ 1.

1 — (C+1) ll Cr+7—1 1/ — (C+1) ll e — (C+1) 1/
X* raernxered = ortcrr ¢ ¢ ¢ ¢ ‘
(C+1)_ ’_ (C+1) ’ _ (C'T'l) ’ ves C7+r‘_1 14

- c 1c c lc c 1c c lc

K K K K

where K=(c+2) I.— H’:l J. and J. is ¢xc¢ matrix.

3. Derivation of the Moore-Penrose inverse of X for the two-way classification with no

interaction and % observations per cell.

If we select rows which have subscription 1 in p, this matrix is the same as X of the
two-way classification with one observation per cell and rank is same. Therefore, V'X
is same with previous section. But

“re c cl,’ 713”\
¢ c 0 15

cl. ¢ cl, Jd
rls 1 J 7'12_l

X' X= R,

then a non-singular minor of order r+c¢—1 is B*=kB., Thus B*! ::—]16—3".
0 0 ¢ é
U=(X'X)"X'=|0 0 Bt }X
Lo ¢
0 0 0 0 0 -
0 0 0 0
b e o
e liw ¢ 6

o
-
-
=
&

1
4
H H H . H
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where 15 is ¢k X1 matrix,

Tec4r—1 ., r—1 ., r—1., ~
’_——rc 13 I 13 7c 13
r—1 ., c+r—1 _, r—1 .,
He 7e 1s 7 15 7c 15
r—1 ., r—1., c+r—1 .,
. 7c 13 7C 13 _—F’C —13 ~
Therefore,
X*=V'XU
N 15, 15, 15, b 15, h
cr+r—1 ., c+1 o, c+1 ..,
¢ ILn ==L ¢ Is
c+1 ., cr+r—1 ., c+1 .,
= c 15 c 15 c 15
’ 4 ’ - ’
-y ey, Ly,
— Hl Hl Hl -
where
- s r_ 7 - 7 -
cr+: 113 rl 1s _7’7/113
7,_1 ’ Cr+r_1 ? 7’_1 ’
le - 7 13 —7’—“13 - I 13
¥ — , r—1 ., Yc+y— ,
- rl Ly y L +r . Ls

4. Derivation of the Moore-Penrose inverse of X for the two-way classification with
interaction and one observation per cell.

To get X*, first find (X’X)~. Since the rank of X’X is ¥c¢, so this matrix is

0 0
(X'X)_:[o Lewre | -

Now we find projection operator Px, where Px=X (X’X)~X’. It can be shown easily
that Px=1..... We know that X* =V’Px, where V= (XX")-X. Consequently, X* is
the same as 7. Note that (XX’) has the following form
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ol4o] I+ ] e e 14 ]
I+7 ol+2) I+ ] e I+ ]
I I 1 oI
B I
LI+ ] I+ ] e e alva)

where I and J are ¢xc¢ matrices, XX’ is rc¢xrc matrix with #>1. It is simple to find a

generalized inverse of XX’. Since rank (XX’)=rc, so (XX’)! exists, and the result is

as follows
“al+b] cI+d] - cl+d] T
cIl+df al+b] -  cl+dJ
(XX =(XX)"'=
cl+dj cl+djf - al+b] |,
where a=7/(r+1), b=—r/(F+1)(c+1), c=—1/(r+1), d=1/(+1)(c+1) and I,] are

cx ¢ matrices. Thus X* has the general form of Result 3.4. 1.
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