Journal of the KSLE Vol. 2, No. 1, 1986
<§I) Printed in the Republic of Korea

Some Effects of Sliding Velocity on The Elastohydrodynamic
Squeeze Films

Hyeong Seon Yoo,* Byeong Cheol Lee**
*Dept. of Mech. Eng., Inha Univ.

** Graduate Student, Dept. of Mech, Eng., Inha Univ
(Received March 10, 1986)

Szo| A

ol

Fuk2le] Ehelo] M

e dEge St FHE Astae 2

1. INTRODUCTION

The analysis of squeeze films between defor-
mable solids through an intervening viscous fluid is
one of important elastohydrodynamic (EHD) lub-
rication problems which arises in the study of
natural and artificial joints as well as mechanical
joints, compliant slider, elastomeric seals, EHD
squeeze film dampers, and the viscous hydroplan-
ing of tires.

The theoretical works reported in [1] and (2] all
dealt with cases of deformable solids composed of
materials having high elastic moduli and further
were restricted to somewhat idealized loadings.
Applications and extensions of the work reported
in [3] which studied for the case of low modulus
material, were made to the viscous hydroplaning
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problem; [4-5]. Recently the effect of viscoelastici-
ty and fluctuating load was studied in [6] and [7].

Many of the above papers use the solution
method described by Rohde and Oh [8] which
transforms the original nonlinear equations to the
linear ones through a rather complex procedure
by using the Newton’s method. In recent works
[9] and [10], the Newton-Raphson method was
adopted to solve the problem.

In this study, the effect of sliding on the
squeeze film between a rigid-flat slider and
smooth elastic half-space under oscillatory loading
is investigated. The half-space is assumed to be a
linear elastic solid and the lubricant to be an in-
compressible, Newtonian fluid. The solution
scheme used here is based on that of Yoo [10].
And an attempt is made to calculate the elasticity
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Fig. 1. Problem geometry

equation more accurately by taking advantages of
characteristic of isoparametric element.

2. ANALYSIS

Fig. 1 shows a schematic configuration
studied. A square slider under oscillatory load is
sliding on the smooth elastic half-space. Thus a
thin viscous fluid film is being squeezed between
the slider and the half-space. The analysis of this
type of EHD lubrication centers on the calculation
of lubricant pressure and film thickness. These
two quantities are related by the Reynolds equa-
tion on the one hand, and the elasticity equation on
the other. The result is a nonlinear integro-dif-
ferential equation, which may include time as a
parameter.

The Reynolds equation for this problem is
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ox u ox 9z u Oz

oh oh
6U 8x+12§ (1)

and boundary and initial conditions are

p=0 at x=0, L ;2=L/2

or_ -

92 at 2=0

(2)
plz,2,t1)20 0=asL, —L/2=<z<L/2 t=0

p=0 at t=(

The film thickness, h(x, z, t), between the
slider and smooth elastic half-space is the sum of
h,(t), the distance between the slider surface and
the plane that would be occupied by the surface of
half-space when unloaded, and hy(x, z, t), the ver-
tical displacement of the surface of the elastic half-
space when loaded:

hix, z, t)=h,{t)+h (x 21) (3)

Boussinesq’s formula can be used to express
h,(x, z, t) in terms of the surface pressure distribu-
tion and the material constant v (poisson’s ratio)
and E (Young’'s modulus) of the elastic half-space;
[11].
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(4)
fL = plz.z.t) dxdz

_x)2+ (zo__z)zjl/l
In all cases, we will require that at each instant
of time the resultant of the pressure on the surface
of the slider equals a prescribed load, wit), i.e.,

L2 L
f f plx, 2z t)dedz=w (1) (5)

L2

The preceding formulation was used to analyze
the problem of the EHD squeeze film with water
being the intervening fluid subject to constraint
(5). The low pressure level that is present during
such events in addition to the small value for
d#/dp for water in this pressure range permits the
simplifying assumption of a constant fluid viscosi-
ty. By using following dimensionless parameters,
we can get following non-dimensional equations
(7—9) and constraint condition (10).

X g 2 p P oy R
X L’ z L P Pre.rv hoo‘ (6)
__fre.rhooz _
T ————12#th, where h,o=h, (0)
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P=0 at X=0,1;2Z=1/2

_2_1_2320 at Z=0

PX,Z T)=0 0=sX=1,
-1/2=72=<1/2, T=20

at T=0

(8)

P=0
~ p
H=H,(T)+SCALE fk-,dg (9)

1=y P, L
where SCALE= - E h.

R’ =distance between P

and H points

fP dQ—W (T) 10
w
P'resz
We will make use of a fully implicit scheme for
the second term of the right side of Eq. (7).
oH_H(T)-H(T-AT) w
oT AT
To obtain P(X, Z, T) the finite element method

is used. The approximate pressure distribution at
time T is thus

where W=

P(X,Z T)= 5 P(T)N,(X, Z) 12

where P{(T); nodal pressure at node i
n; number of nodes

Applying the Galerkin’'s approximation to Eq.
(7) and (8), we get the following system of equa-
tion; [12].

KUPJ +f¢=0 (13)

where
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The calculation of the second term of Eq. (9) is

done by making use of isoparametric element and
Gaussian quadrature.

)dQ

P=X3XN,P,, X=3NX,, Z=3XN,Z,

R =V (X,-X)"+ (Z,— Z)? 14
:V (Xa_ ZNka)z+ (Zo_ ZNkZ)c>2
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where k=1, 2, -
Thus

(node)

SCALE fkfi, dQ

=SCALE z

N
ZT",P': det J dé&dy

= SCALE); & Jaa )_711\{7;:1’,; det J (15

where [ (element)

:1, 2’
iLj =12 -

a;, a; = weighting factor

(Gauss order)

Since Eq. (9) is highly nonlinear, the convergence
of direct iteration is not guaranted. For a fast con-
vergence the Newton-Raphson iteration scheme
which will converge in a finite number of steps is
introduced here. Eq. (9) can be expressed as

The differential form of this equation is
P

dP, =K dP, +dKP, +df

oP 7
‘K dP,-+ AdP, + BdP, 1

where K., — f UNIH YN, d Q
Q

oH
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2 oH oH
B, LNL SplUsSyt SpNda

START
}

Set Initial vaies
T, Ho, W,P etc.
i

= T=T+AT

r——-' }
Assume P

}
Solve Eq. (9). find Hnew
|
Solve Eq. (21). find Pnew
!
Test Eq. (22)
I}

Test Eq. (23)
|

Continue
| no
STOP

Fig. 2. Solution procedure
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Usually sliding velocity is independent of pressure
P, so B;is
e} aH
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The above expressin 5H/ 9P is valid since the
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integral boundary is independent of P. The tang-
ential matrix 9¢/9P,,is
¥

E)t:K%LA#‘B 20)

Using the tangential matrix the iteration pro-

cedure is, 112]

o9
oP

P_n+l o
i

(ZX)n AP, "t @m=0

P+ oaP”
where & P®; pressure increment
n; number of iteration
The iteration process is terminated when
&P

I

)2}1/2§61 (22)

f‘” f P"dXdZ -W (T)
-1/2 [1]
T)

where € ,and €, are suitably small numbers. Fig. 2
shows a schematic solution procedure.

Se, (23)

3. NUMERICAL RESULTS AND DISCUSSION

Fig. 3 shows the prescribed non-negative
loadings of sinusoidal form, namely

W(T):Wo(He-sin(e--’z'—)) 04

0
Fig. 3. Sinusoidal load W versus time T
where §="—T

The bearing volume is defined as following to
see the changes of the volume of fluid entrapped in
the bearing.

B, — fHd Q (25)

Parameters for this problem are the nominal

Ho
1 SCALE = 10
WO = .0007
r = 30
—Us = .08
-—-Us = 0

Nl R

3 T
0 30 60 90 120

Fig. 4. Fiim thickness Ho versus time T

LI | | N

0 30 60 90 120
Fig. 5a. Film thickness Ho versus time T
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T curve. Here we can see that the trajectory of H,
with or without sliding velocity resembles
response of a damped oscillation. The effect of
load conditions and the fluid entrapment phe-
nomenon can also be seen in Fig. 5. The case of
small period and large compliance factor is
depicted in Fig. 6 where we can see almost
periodic response of H, trajectory.

Fully 3-dimensional film thickness H distribu-
- tions as function of time T is presented in Fig. 7.
.3 T As we can see, the film thickness distributions
0 30 60 90 120 when the time rate of change of load is negative

Fig. 5b. Bearing volume Bv versus time T

load WO, the period 7, the compliance factor
SCALE, and the sliding velocity Us. Fig. 4 to Fig.
6 show some effect of sliding on the trajectories of
H, and Bv. In fact the sliding velocity of 0.08 has
no significant effect on the shape of H, (T) versus

Ho H
SCALE = 30 -
0.969
WO = .0007 !
T = 3
—Us = .08

0.8834

---Us

0.9148

0 3 6 9 12

Fig. 6a. Fiim thickness Ho versus time T

0 3 6 9 12 . ) ) ) ) .
Fig. 7. Film thickness distribution H as function of time 7

Fig. 6a. Bearing volume Bv versus thim T (SCALE = 30, Wo = 0.0007, T = 15, Us = 0.08
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Fig. 8a. Center line film thicknress distribution H as func-
tion of sliding velocity Us
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Fig. 8b. Center line pressure distribution P as function of
shiding velocity Us

are somewhat different at the corner in com-
parison with the distributions when the time rate
of change of load is positive. One Fig. 8 we see the
sliding velocities have little effect on the film
thickness distribution except large since fluid is
entrapped in the pocket which develops in the de-
formable body.

4. CONCLUSION

A typical cyclig-film-thickness distribution is

obtained. As a pocket develops in the deformable
body, fluid is entrapped. Thus the pressure dis-
tribution in the interior region is almost flat. The
slider trajectory with time when the sliding is pre-
sent is slightly lower than that of no-sliding. The
influence of sliding is thus little but large values
of sliding
thickness varsus time responses are found in the

versus The almost periodic film

case of small period and large compliance factor.

The numerical scheme used here is general
and can be applicable to other problems, such as
the dynamically loaded EHD connecting rod pro-
blems and viscous hydroplaning of tires.

Nomenclature

SCALE : elastic modulus

h, H : film thickness; dimensional, non-
dimensional

h, H, . displacement when unloaded;
dimensional, non-dimensional

h, elastic displacement

L length of the slider

N, shape function

p, P pressure; dimensional, non-
dimensional

pP,, : reference pressure

SCALE compliance parameter

t, T : time, dimensional, non-dimensional

U : velocity of the slider

U, : sliding velocity parameter

w, W load; dimensional, non-dimensional

WO : non-dimensional nominal load

(x,z), (X,Z) : rectangular coordinates; dimen-
sional, non-dimensional

AT : non-dimensional time increment

v : poisson’s ratio

§.n : natural coordinates

€, €, error limits

T : non-dimensional period

M : viscosity

Q : integral boundary
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