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Kalman Tracking Filter for Estimating Target Position
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Abstract

By using a least-square input estimator and likelihood ratio technique, a tracking problem
is presented. A Kalman tracking filter based on constant—velocity, straight-line model is used
to track a target and the filtered estimate is updated using an input estimate when a maneuver
is detected. Track residuals at each scan are sensed by a detector to guard against unexpected
corrections of the filter. The simulation results show there are significant improvements using

the scheme presented.

1. Introduction

The estimation problem of a moving object
finds a wide application in such areas as air
traffic control, weapons systems, space aircrafts,
and range ships. In the above areas of ap-
plication, a continuous tracking of an airborne
object may be desired. In order to provide

continuously the most reliable knowledge of
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the locations of airborne targets, many di-
fferent tracking filters, such as the Kalman
filter, the a- B3 filter, the Wiener filter, and
a simple extrapolator, have been considered
since in the early 1960's Kalman first int-
roduced the idea of the recursive filtering and
there have been many advances in the de-
velopment of sophisticated digital filtering al-
gorithms for tracking airborne targets.

Earlier work on the maneuvering target tr-
acking problem includes Singer’s generalized
tracking model” The generalized model trac-

ks a maneuvering target fairly well provided



the so-called maneuver parameters are ap-
but if the
the tracker degrades

propriately chosen, target is

not maneuvering, in
performance compared to the tracker based
on a constant—velocity model. Mcauray and
Delingerr have shown that there are si-
gnificant improvements in the tracking ca-
pability when using a maneuvering detector
to two parallel models. Thorp' showed that
a weighted combination of two Kalman filter
estimates in respones to a detected maneuver.
Moose et al’ combined the generalized model
of Singer with theadaptive Semi—-Markov man-
euver model. Another technique, described by
Chan et al.¥ use~ a least square estirpator to
estimate a target’s acceleration input and up-
dates the output of the baseline tracker, ie.,
the predicted estimate, by the input estimate
if the detection is declared.

By incorporating the input estimator with
an update of the filtered estimate to provide
some improvement in position accuracy, a
maneuvering target problem is implemented.
Measurements of target position are made
in sensor coordinates and then filtering is per-
formed in the same frame. We continue to
use the constant--velocity, straight-line tracker
for estimating positions. When a bias develops
in the residual sequence due to the target de-
viation from the assumed motion, updating
of the filtered estimate is performed to remove
the bias. Whenever the estimate is updated,
the error covariance increases. So, in order
to guard against unexpected update of the
estimate while the target doesn’t maneuver,
the likelihood ratio test is used to monitor

the occurrence of maneuver at each time.
2. Modeling

A plot of the target and sensor geometry
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Fig. 1. Target geometry at time ty: ry, bk, and

ex denote range, bearing, and elevation, respe-

ctively. The sensor is assumed at the origin.

is shown in Fig. 1.

The selection of spherical coordinates(r,b,e)
rather than Cartesian coordinates(x,y,z) for
our target and sensor modeling is due to the
fact that the measurement error covariance
becomes diagonal. The true target motion is
a nonlinear coupled differential equation in
the range, bearing, and elevation variables
but the approximation of target motion by
a linear system can be found. An approximate
spherical dynamic® of the target can be rep-

resented in the matrix form as

Xk‘!:Ak,)(k'+Blik+G):vvk, (1)
where (p, 1T0000
rx 010000
by 001TO0O
i ™7 000100
ex 00001T
e 000001
T*/2 0 0 100
T 0 0 100
B,— 0 T*2d, 0 G 010 ’
0 T/dy O 01¢0
0 0 T&2d, 001
0 0 T/d, 001
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and

Xr =state vector at time t«

A xr=state transition matrix

Ur= "u,(k):uy{k):ue(k)]T deterministic input
vector

Wr = "wr(k)w,(k):we(k)]T noise on the state
T=sampling period

dr=Fx/xCc08(8xr/k)

d2=Tx/x with Tx/x, 8x/x provided by the fi-
ltered  estimate Xx/x.

The ovservation equation can be written as

Zk+ 17 Hk+1X;€+1+V;€+1,

where
100000 (2)
Hy=] 001000
000010)
Za=[7,k) T zyk) . ze(k)]T measurement
at ilme ty

Vi=[v,&k) I velk) velk)]T measurement
noise,
{Wit and {V,! are assumed as independent

zero mean, white noises with

EHN); Wzstkaﬁm (3)
EIVVil =R (4)
EIW,Vil=0

for all k,n=0, 1, ---, where & is the Krone-
cker delta. It is further assumed that the in-

itial state is independent of the two noises.

3. Kalman Filter Equations

By dropping the time indices of the constant
matrices A,, G,, and Hjy for convenience,

the Kalman filter equations are given by

5(;:+1,-x+1:5(k+1/;: +Kk+1[zk+1%{5(k+1/ﬁ (5)
Koo n— Ay wt BaUy (6)
Ky 1= Pk+1/kHT[HPk+|/kHT+Rk+1]_1
Prive= APy AT+ GQ,GT
Pk+1/k+l:[17Kk+lHi| Pk+1/k. (7)

In order to start the recursive filtering op-
eration, the Kalman filter equations should be
initialized. Assuming that after the first two
measurements, ie., Z, and Z, are received,
the optimum state vector Xz/z can be initia-

lized as in (8)

}'72 /27(2)
|| [2e@ =2, D1/T
Y by, 2, (2)
Xy =12 =
v P?/z [Zb(Z)*Zb(l)]/’r ' ®)
?2/2 20(2)
.ez/z [Ze(Z)'Ze(].)]/F

The corresponding covariance of the errors
in the optimum estimate, as shown in Ap-

pendix A in detail, is

P, .= 8,RiST+8S:R.S],

where
0O 0 0 1 0 0
/T 0 0 /T 0 0
- 0O 0 0 _ 0 1 0
Tl owyr ot Tl o VYT o0
0 0 O 0 0 1
0 0 1/T 0 0 T

and R, R; are obtained from (4).

Now Uk is also unknown but will be es-
timated in the sequel. If the target is not man-
euvering, the target motion can be well mo-
deled by simplifying the maneuvering model,
i.e.,, Ur=0 intl). The filter that uses the si-
mplified model is called the Simplified Kalman
Filter(SKF). The filtered estimate X,., s

can be expressed by using X, , and Z,,,:

Xir ko= AXpx+BaUst Ky o Zpoi—H (AX
+BxUx ]
— Dyer iAXw x+ Kes1Ze 1+ D s BalUs, (9)
where Dy, ,=[I1—Kg, H].

Using the similiar idea to the innovations

process,? a sequence is defined by use of the

(521)



filtered estimate
Zkz Z)c'_ HX);/)c. (].0)

This residual sequence {Z, has the important
properties®®  that it is a zero mean white
Gaussian noise if the initial state and the two

noises are Gaussian. Its covariance becomes

E} Z,ZT =HPy, tH™+ Re— ws. 11

4. Estimator of the input?

As shown in the previous section, the Kalman
filter equation requires an Uy, which is un-

known, but should be estimated. When Ux =0

in(9}, we denote the estimate of the SKF by )—(k/k_

Suppose that prior to time ty no maneuvers occur
such that X, ,=X, .and the target now under-
goes a maneuver with a sequence of inputs
Uk, Uks1,.eeoy, Cheonov. The Kalman filter(9), which
is linear, will continue to give, at times 1y,

Terz, ... , tren, the estimates:

)A(M VKRR Dk+1A)2k/k+ Kis1Z ke 1+ D BeUg
=Yk+l/k+l+Dk+lBkUk
)Zk+ 2k 427 Dy: A (Dk+ 1A>2k/k+ Kir1Zrs 1+ Diris
BiUp) +Kie2Zrs 2t Dy sBrer iU
:YH 2ke 2t D 2AD ks 1 BiUpt+ D,
By Uks

N — 5
Xk+n/k+'n=Xk+n/k+ at zo[ Eo(Dk-rnth)DIHn-)-!
Bk+ n~z—JUk*n~2——J] + Dl:+an+ n- 1Uk+n-1 . (12)

Equation(12) gives us an insight that the bias de-
veloped due to target maneuvers will be re-
moved by an addition of a correction term to
the estimate of the SKF. Now we make one
approximation to estimate the unknown de-
terministic input. The target moves under a
constant acceleration, i.e., U, ,=U for n=0,1,...
,m-1. Even though U, , are not constant over
the interval, the estimator will give the best con-
stant estimate for the different inputs in the

least square sense. Equation(l2) can be rewritten

TKIEE Vol. 35, No. 11, 1986. 11

as

R o 2 J
X’HH/IHH: Xk+n/k+ at 1 Eﬂ[ Ho (Dk+7|—tA) Dk+n~
1-Brine2s ]+ DisnBrenaf U (13)

Let

2/:«7(: Zk+ n Hih— n/k+n (14)
and from (10)

Zk+n=Zk+n“’HXk+n/k+n. (15)

then from (13, (14, and (15 _
Zk+ n=H (Xk+n/k+ nﬁim n/k+n) +Zk+n

- J
ZH’ go [ :::[10 (Dk+n—tAlern— 1~1Bk+n—2—1]
+Dk+nB)¢+n>1$ U+Zk+n. (16)

The matrix form ofilf] for n=1, 2, -+ m,

namely for moving data window m, is given by

Y=FU+e, {17
where

i
Y= zIc+z »

Zien

HD.1Bx

F= H(Dk+2ADk+lBk+DkaBk+l)

H%z‘)[ gc (Dk+m— 1A> Dkun‘ 14JBk+m —2—1]+

Dk+mBk+m *1‘
and

Zan
e=|Zx.»

Ziim

(522)
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Y and e are both 3mx1 vectors and Fis a 3mX3
matrix. Since Ry is diagonal for all time, the 3m x
3m covariance matrix for eis found to be the

diagonal matrix M as

Wr+1 O

Wr+2

M=EleeT}= . . (18)

0 Wr+m

The unbiased least square estimate®4 of u

is

U= (FT™M~'F) ! (FTM'Y) (19
and its error covariance is

L= (F'™M™'F) (20)

As long as detection occurrs, the estimate of
the tracker is updated by the optimum input
estimate U through

?k+m/k+mzik+m/k+M+Ck+mU’ (21)
meaz I
where C"*"‘zgo[ Eo(Dmmsz)DHm—lff
B,Hm,z_j] +D)¢+mBk+mvl
and Xiim xom is the updated estimate of Xyim.

The brief configuration of the input setimator

is shown in Fig. 2.

Low
Zium )Tu.mum D ykm\li«m -
SKF e
T ™
Y |F [M !
: Detector
i

Least Sguare
Input Estimator

Threshold 2z
— ]

Fig. 2. Input estimator at ty,m.

veloped in Xj.m, sem but also increase the co-
variance of estimation errors. So, the update

of the estimate should be performed when man-
euvers are detected. While the target doesn't

maneuver, Nonzero U is due to the effects of
the two noises. Such small U should be ignored.
Using the results obtained in the Appendix B,
the following covariance matrix with the positi-

ve definite Cy,,L C},, term is obtained:

E-i (Xk+m~}-{k+m/k+m> (X)wm”_?lwm/)wm)r}
=Pk+m/k+m+ck+mLCI+m. (22)

S. Detection of the maneuver

Detection of a target requires the choice of a
threshold and a moving data window. These
quantities are chosen by considering tradeoffs
among the probability of false alarm Pg, the
probability of detection P, savings of com-
pulation time, and accuracy of the least square
estimate. Now we assume that all the statistics
related to our detection problem are Gaussian.
As shown in the previous section, if the detector
correctly detects the maneuver, the estimate of
the SKF is updated by the input estimate 0.
Our detection scheme is that the norm of U, || U N
is first found and the optimum test for the co-
component of || (J || is made. The
idea behind this detection scheme is that if §| U Il

is small, the actual U is not only small but aslo

rresponding

Zx is small. Let the subscript x denote vectors
or scalars corresponding to || U |l. Surely, x will
represent one of the following: r(ange), b{earing
or e(levation). Detection of the bias at time tq.n
based on the multiple observation reduces to the
following hypothesis test:

H, : no maneuver occurs . ry= (Zy x 23)
H, : maneuver occurs ; ry=(Zx) »— (CxUn)
for k=q+1, ---,g+tm

24)

As we expect, the correction through the eq- where Uk is the optimum estimate of U at ty.

uation(?]) will not only remove the bias de- From the above expressions, r, ¢, and v are def-

(523)



ined as
Tg+1 *Cq+1Uq+l
Y=|rg |, Cc—= _Cq+qu+2 ,
Fagim —CeimUqimJz
Z g
and v=| Zqs.
ZQ+7’l X

which are all mx1 vactors. It has always been
known that the measurement error covariance
Ry is uncoupled. One valid assumption can be
made that Rx== R flor all time. If we suppose
that the target is in a well-defined track long
enough before any maneuver occurs so that the
steady state value of Pqq can be chosen to com-
pute wgqin (11), then we might take, to a good
approximation, the mxm covariance matrix of
v as

0

Etvvil= (25

0O Wq) x

Then the likelihood ratio and likelihood ratio
test are

L(r=EXP[—1/2(r—¢)Tw ' (r—c)+

1727w 'r] 26)
and
H,
Lir) =~ & @n
<
H,

(524)
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repestively and where A is the threshold of the
test. Taking logarithms on the both sides of (26),

(27) and substituting (26) into (27), egquation
(27) can be written
H,
Tw'r InA+1/2c"w e, 28
H,

If a normalized scalar sufficient statistic is de-

fined as

A(r)=("w'r)/ (c"Tw'c)"?, {29
the likelihood ratio test thus becomes
H,
> .
Alr) InA{cTw ¢) V' +1/2(c"w 'c)?
< =7 (30)
l"{()

The detection operation therefore consists in de-

terming  A(r) and comparing it with the th-
reshold Zy. If A(r) exceeds Z;, it is decided
that H: is the true hypothesis; otherwise, it is

decided that Hy,. We now can obtain the two
and P,

densities of the sufficient statistic(29)

expressions about Pp from the con-
ditional

conditioned upon the hypothesis Ho and H::

PFzﬁij ' (A[Ho) dA =erf[ —2Z] (1)
pnzlf‘/:l_r f,1|H,,(A1Ho)dA
=1—erf[Z;— (¢Tw 'e) 39

In using the Neyman-Pearson criterion®*
subject to the constraint

pra, (33)
the threshold Zr and the probability of detection
P, can be obtained from (31), (32), and (33).
However, it should be noted that the Ppn de-
pends not only upon the threshold Zr but also

¢, i.e.,, Uz so that Pp will increase with increases



Kalman Tracking Filiter for Estimating Target Position

in Ux. Thus, this means that we need to specify
the lower bound of Pv by using the minimum
Uz that must be detected because the computed
Po for the given value a is exact only for one
sample period. If any Uy greater than (Ug) min
higher than the
lower bound. So, the steady-state value of Py ¢

is observed, it will give a Pp

and K, are used since the estimation and de-
tection is needed most when the gain of the SKF
is small.

It has been mentioned earlier that the number
m is a design parameler of the detector and es-
timator. Essentially, the m most recent residuals
are examined to determine whether they differ
significantly from the statistical description of
their values that assumes no maneuvers. The
number m greater; than one will not only inc-
rease the accuracy of the input estimate but
also prevent failure declarations due to a single
unacceptable measurement. On the other hand,
it is inappropriate to use a large number m since
this will decrease the sensitivity to maneuver
oceurrence as time progresses, along with an inc-
rease In the computation time. Hence, we might
choose m= 5 as the reasonable number of data

points in the detection of a maneuver. 34910
6. Simulation and Results

The tracking scheme presented was implemented
on a VAX/VMS computer using simulated data.
For purposes of comparison, the estimate of the
SKF without the maneuver detector was i-
mplemented in addition to that of the Kalman
filter described in section 4, called the Modified
Kalman FilteritMKF). Target trajectories ge-
nerated in sensor coordinates are shown in Fig.3

through Fig.5. The following statistics are used:

R=diag (g%, o%, o%)
where ¢,=0.0183km and o,=0.=0.003rad
Q=diag (%, d% ob)
where o,~0.183m and ¢,—.=0.03 mrad

T=2 sec

(525)
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Fig.3. Tracker performance in range coordinate.
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Fig.4. Tracker performance in bearing coordinate.

and the simulated scenario is as follows:

The target initially flying at 0.lkwsec in speed
is on a constant course for 112 seconds. At time
t=112 sec it to maneuver with ac-
input +0.02Zkwsec?, at t=120sec co-

mmences a fast turn, and at t=126 sec com-

begins

celeration

pletes its maneuvers. The target keeps a straight-
line track at 0.38kwsec in speed until it again
starts its maneuvers with —-0.02kwéec? at t=232
sec, making another fast turn at t=240 sec, and
finally completing its maneuvers at t=246sec.

For our experiment, the probability of false
alarm, Py, was given by Pp=2x10"* which
led to Z{=2.87. The filter was near steady state
at t—=64sec after the SKF was first put into



2.7
- Cl-- true
X-- estimated by SKF
M-- estimated by MKF
8.62 —
o
o 4
w
£ 8.54 —~|
A
T
o
> -
v
=
8.496 —
8,38 —
@8.3e T I T T T T T T T
0.8 60.8 120.9 188.2 248.8 308.8

Time( sec )

Fig.5. Tracker performance in elevation coordinate

operation,

In Fig.3 through Fig.5, we have shown the po-
sition estimates of the MKF and the SKF. The
results shown in Fig.3 through Fig.5 show the
MKF's superior tracking performance.

In order to give a good comparision, we com-
puted the sum square residual errors; which are
the sum square of the differences between the
true and estimated values. Table 1 gives the
sum square residual errors. It is clear that the re-
sidual errors are quite small, especially for
the MKF and a small difference as shown
indicates the satisfactory performance of the
MKF. The next described by

Fig.6 through Fig.8, shows the rms error in the

simulation,

MKF position estimate. It becomes apparent
that during dectecting maneuvers the rms error
increases but decreases during constant-speed,
straight-line flight because the filter is settled
by the dectector. This simulaton also shows

that the rms estimation errors are kept below

Table 1. Sum square residual errors between

the true and estimated values.

SKF MKF
Range 0.726914 * 10* 0.262592 % 10*
Bearing 0.204657 < 10 ! (.964886 < 107*
Elevation 0.415042x10"* 0.127342x107°
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the inherent measurement errors, This means
that the MKF is able to maintain track with

good tracking accuracy.

7. Conclusions

In this paper we have presented a tracking
scheme which has given a good estimate of a
target position in three dimensional space.
This tracking scheme gives two advantages in
addition to the several advantages which the sc-
heme suggested by Chan et al. does:

First, By incorporting the least square input es-
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timator and a detector, our baseline tracker
produces a filtered estimate instead of a pr-
edicted estimate to ensure increased accuracy
and the filtered estimate is updated when man-
euvers are detected. Second, a detector based
on multiple observation residuals are used to
detect maneuvers to avoid maneuver declarations
due to a single unacceptable observation.

Simulations show that the tracking scheme pr-
esented here can give a realistic solution to tr-
acking problems for maneuvering or non-
maneuvering targets. In particular, if a typical
target trajectories are known in practical ap-
plications, we can recommend reasonable choices
of the threshold to improve the overall perfor-

mance.

Appendix A

Initialization of the optimum state vector and
the corresponding covariance of a tracking filter
may be often taken while the maneuvers of the
target are not well known. Therefore,we start
the initialization under assumption of constant-
flight
which provide sa-

velocity, straight-line and with ap-
proximate equations(A-1)

tisfactory results for the majority of applications

%‘2: (rz*rl)/T

b,=(b,—b)) /T (A-1)

(527)

3

é2:<ez—el)/T.

Equation(8) can be rewritten as
1:2/2=I“z+vr<2)

f‘2/2= f‘z+ [VT(Z)_VT(I)]/T

by a=bstv, (A—2)

B}/2=Bz+[vb(2) “Vb(l)}/T
Qz/z=€z+Ve(2)

é2/2=éz+[ve(2) ‘Ve(l)]/T.

Expression in the matrix formof (A—2)
becomes

XZ— )‘(2/2 =5,V,— Szvz,

0 0 0 1 0 0
1/T 0 0 VT 0 0
0 0 0 0 1 0
S, = d S,=
1o owT oo [T o T oo
0 0 o0 0 0 1
0 0 1/T 0 0 1T
Hence,
Pz/z:Ei (Xz_Xz/z) (Xz-Xz/z)Tf
=S5,R,S57+S,R,ST.
Appendix B

The least square estimate U is unbiased because
e is also a zero mean, white sequence. Taking
the expectation in both (21) and (13) with the

time index change, we get

E‘ §k+m/k+m% :E{—Xmm/k»rmt +Ck+mE{ E”
—El{Xpen nenl +CrinEi Ul
=E% X)c+m/k+m*-

Next we derive the error covariance in (22). From
(13) and {(21),

ik+m/k+m=5(k+m/k+m+ck+m(ﬁ—U)-
From (17, (19, and 0, we see that
U—U=LF™M-e,

Then,

Xk+m_Xk+m/k+m: (Xk+m" ch+m/k+m) —Chrim



LF™ e,

Hence, _

Ef ('Xmm ‘>=():+m/k+m,) (Xiwm‘imm/hm)”
=Print CraLFTM ' Elee™ (CpinlLF™™M™)T
:Pk+m+ck+mLC1;c+m-
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