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Stress Intensity Factors for Branched Edge Cracks

Inhoy Gu*
(Received August 30, 1985)

Key Words: Stress Intensity Factor (<-# &4 <), Branched Edge Crack(7tx]xl EH =
%), Bent Edge Crack(F3%##% ¥x=i=39), Dislocational Complex Potential (%
%] &4%<), Dislocation Distribution(d $}4%)

B

T o]l E5A ¥ AT
Ao 2 4439

B2 dojpivh FF & o] FE AWAQ

$A A+ E
SERERE EEEEEEELE
$Ee¥e $ARAY A+E

AR e

=

A EE & T IR =2
718 7k Ay HL SH YT

Agste Azt ¢

2

Qelgon A3 Izt BaA Az A J|Ese) o] W At A5 v mE g
AR gz W A4AAAE A9 71 Z3E Mapping Collocation # 43} vja=)

d B2 AT
@ afolol] AR Aol 7k gl HEpykEh

1. Introduction

The present paper is concerned with oblique
edge and branched edge cracks in a semi-infi-
nite plane of brittle homogeneous isotropic ma-
terial. A primary interest in the linear elastic
fracture mechanics including small-scale yielding
fracture is in the stress distribution near a
crack tip, namely the stress intensity factor
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and its related properties, which are considered
to be well estabilished in this field.

Practical significance in dealing with edge
cracks arises in many situations. Fatigue cracks
are initiated from the free surface. And many
cracks found in service conditions are either
bent or branched. Since fracture from microst-
ructural observations can be classified in general
into the shear and opening mode fracture, the
transition between the two modes may comprise
the angle change of a crack path, i.e., a bent
crack. Environmentally induced cracks such as
various corrosion cracks must be edge cracks,
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which usually become branched under tension.

Extensive studies have been carried out for
the bent and branched cracks embedded in an
infinite plane, as well surveyed in Lo and
Cottrell and Rice®.
that an embedded crack symmetrical about a

It seems often assumed

loading axis is an approximation for a crack
emanating from a free surface®. The present
analysis shows a substantial difference between
the two cases, and a simple correction factor
appears to have a limited validity.

There are many methods—analytical and
numerical—for determining the stress intensity
factors. Among them one of powerful methods
seems to be the assumption of dislocation arrays
along a crack-line. Instead of the .continuous
distribution of dislocations, we use the method
of discrete dislocations, which was developed
by Vitek® for the problem of branched cracks
embedded
in using the method are; it

in an infinite plane. Advantages
is simple and
straightforward in usage, for no singular inte-
gral equations are involved. The Green’s func-
tions in the boundary integral method are not
readily available for complex crack shapes. One
of the powerful points in the discrete dislocation
method is that it has no restrictions on the
crack shapes, as will be seen later. A new
computational scheme for accurate stress inte-
nsity factors is attempted from the equilibrium
Burger’s vectors near a crack tip. Applications
of the method to the problems with exact solu-
tions such as a normal edge crack and an em-
bedded angled crack show that highly accurate
results can be obtained with linear algebraic
equations of around 100 unknowns about the
magnitudes of of Burger's vector of discrete

dislocations.

2. Dislocation Model for Cracks in
Half-Plane

A crack-line in a half-plane is replaced by

an array of discrete edge dislocations with slip
planes normal and parallel to the crack-line.
The dislocations are distributed to have equil-
ibrium stresses with applied stresses so that
the crack face can be traction-free. For the
purpose of calculating dislocational stresses, we
first derive the stress functions of an isolated
dislocation in an isotropic semi-infinite plane.
The elastic stress components in plane elast-

icity problems are expressed in terms of the
complex potential functions ¢(z) and ¢(2) of
the complex variable z=x41y®.

ot =20¢ (2) +¢ (2)]

Oy—0x+ 207, =2[2¢" (2) +¢" (2) ] 1)
where the superposed bar denotes the complex

3 4 — d 12 . d2
conjugate, and ¢’ (z) ~72—¢(z), ¢ (2) =iz

$(z). When an edge dislocation with Burger’s
vector b= (b,, b,) is located at z,=x,+iy, in
an infinite isotropic elastic plane, the complex

potential functions are

$a(2) =7In(2—2,)

bo(2) =7In(z2—20) ~ 720/ (2—20) (2)
_ G(b,—1ib,)
where y=—r 2 = 3

in a plane strain condition, and G is the shear
modulus and v is Poisson’s ratio. For a dislo-
cation near an elliptical hole, as shown in Fig.
1, there has to be an image stress field for
the traction-free condition on the hole surface.
Employing the conformal mapping technique,
we transform the ellipse in the z-plane into a
circle of unit radius in the {-plane. Thus the
region is defined for |{[>1.

2=R({+m/C) @
where R=(a+b)/2, m=(a—b)/(a+b). The
complex potentials for the image stress field
were obtained by Vitek™ using the Cauchy
integral method.

¢1(©) =2rIn{—7In(C—m/C,)

—'Tln(c_l/éo) + [Co(l‘i‘mioz)
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Fig. 1 An edge dislocation near an elliptical hole

where {, is the transformation of z, from the
equation (4). These complex potentials can be
further transformed to be appropriate to our
problem in the half plane defined for x>0.
Consider a limiting case of the ellipse by letting
the semi-axis a of the ellipse go to zero. Then
the equation (4) can be written as

{2 z\*
=G4/ (5)
Using the condition z/6<1 of the semi-infinit-
eness, we get

¢= <—25)+1

=-(§)+1 )
Substituting the equation (7) and the corres-

ponding transformation of z, into the functions

(5) and (8), and from the semi-infinite plane

condition, one can obtain a compact form of
the functions after routine mathematical mani-

pulations.
ry=— T T(2o+20)
L' (a) = RN ML AT ®
ey THT T(201+29) +72
G e ML RS AL

_ 2Tz(24+Z,)
(z+2)° ©
In a similar way, when the surface y=0 is
a free surface with a region defined for y <0,
we let b—0 and z/a<l.
functions for the dislocational image stresses

Then the stress

are given as follows for the half plane y<(.

’ — T _ T(z2—2Z20)
L' (@)= P AR (10)
N T—T 7(20—Z20) —72
WA= T Ty
————27(2(_2;:)?) (11)

Complete stress distress distributions around
an edge dislocation in the semi-infinite plane
are calculated from the equation (1) with the
superposed potential functions.

&' (2) =o' (2) +¢1"(2)
& (2) =y’ (2) +¢1" (2) (12)

The above solution yields an identical result
to Hirth and Lothe® in a particular case of
b=(1,0).

As mentioned earlier, discrete dislocations
are distributed along a crack-line of length /
in a continuous half plane subject to a remotely
applied tension, as illustratee in Fig. 2. First
we divide the crack-line into # segments, and
at the ith dividing point z,, two dislocations
are located with Burger’s vectors of magnitudes
b,y and b;,,, normal and parallel to the crack-
line respectively. Note that z,, is the crack tip
point (s=/) of a stress singularity. Due to the
presence of the dislocations, tractions along the
crack-line should be vanished. With respect to
the center of each segment z;= (2gi-1+ 20s) /2,
the notations o.(z;, 20:) and 7, (zj,z,) are
given to the normal and shear stresses at z;
due to the dislocation of unit vector at 2z, and
0.(z;) and 7,(z;) denote the applied stress co-
mponents at z; in the uncracked plane. Thus
the equations to determine 2# unknown b.’s can

be written as follows.
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é‘l [0:,10,1(2i, 20i) +bi, 2002 (25, 20:) ]
+0.(2;) =0
‘g;l (001751 (2, Z0:) +b1y27502 (205 200) ]

+7:(2:) =0 (13)
where the subscript 1,2 corresponds to the Bu-
rger’s vector normal and parallel to the crack-
line respectively.

In the model of a continuous distribution of
dislocations with a density B(s), the stress
intensity factor 2 can be determined from the
Burger's vector near the crack tip (s—! in
Fig. 2)™,

Fig. 2 Dislocational model of a crack-line in the

half-plane
_20—»k ¢ ds
SB(s)ds_ oAz Sﬂ_:? (14)

where the mode ] and ] stress intensity fac-
tors are k=Fk,* and k=Fk; for the Burger's
vector normal (;,;) and parallel (b;,,) to the
crack-line respectively. In the present analysis,
as a discrete dislocation is located at the right
hand side of each segment, a special computa-
tional scheme is developed for accurate stress
intensity factors. Taking the last two segments
near the crack tip, one can get from the equ-

* The stress intensity factor is defined as in
ky —
Cij=———=]J1ij 0 +O
werr fu(@)+0(V7)

ation (14)
_btb,  G2m

k=205 "4—*——“(1_32¢m (15)
where 4/ is an interval in the egual division
of the crack-line. This expression was found
to provide a slightly lower value when applied
to the problems of a normal edge crack in a
half plane and an embedded angled crack. In
a similar fashion, with respect to the second
division (/=#n—1) from the crack tip, the equ-
ation (14) gives another expression, which was
a slight upper bound.

—_ bay G J2r

bo= el m%’f_ﬁ (16)
Thus the mean value of the above two expre-
ssions is expected to be an accurate solution,
relatively irrespective of the number of divisions
k=(Ri+k)/2 an
This computational scheme was tested upon
the problem of an angled crack embedded in an
infinite plane under uniform tension, for which
With a
the eguation

the image stresses are non-existant.
total number of 100 unknowns,
(17) gave an error less than 1%. And for the
normal edge crack of length ¢ subject to rem-
otely applied tension ¢., the equation (17) gave
ky=1.11920. v7zc for n=50 (4/c=0.02) and
k1=1.1231 oo v7c for n=100 (4l/c=0.01),
compared to the exact value k;=1.12150. v7C
of Koiter®,

In this model of discrete dislocations, there
seems to be arbitrariness about how to distrib-
ute the dislocations. However, an equal interval
provides more accurate results than the other
cases. Furthermore, when an equal interval is
not permitted as in an infinitesimally kinked
crack, a linearly varying interval is adopted so
that neighboring segments may have an appro-
ximately equal interval. This scheme was found
to be an efficient way of distribution when
tested upon the normal edge crack.
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3. Numerical Examples

3.1 Oblique Edge Crack
The discrete dislocation model is applied to
the problem of an oblique edge crack of length
¢ in a semi-infinite plane under uniform tension
0., as shown in Fig. 3. Along the crack-line,
60 divisions are made with an equal interval.
The Burger’s vector normal and parallel to the
crack-line at the 7th dividing point z,; are res-
pectively
b:,.=b;,,(—sina, cosa)
b:,,=b;,,(cos o, sin a) (18)
In the equation (13), the stresses in the
absence of the crack are constant at all z; for
a given angle a.
0. (2:) =0.(1+cos2a) /2
7,(25) = 0. (sin2a) /2 (19
The calculated results are shown in Table 1.
Bowie® obtained the stress intensity factors
for oblique edge cracks in a rectangular panel

(panel length/width=2) by a modified mapping
collocation method. Thus the crack in the half
plane can be approximately compared with the
case of the panel width 10 times of the crack
length. The maximum difference is that the
crack in the panel has about 6% larger value
of ky for a=0 and about 7% larger &, for a=
45° than those in Table 1. When the finite
geometry is taken into account, it is expected
that the presented solution has reasonably good
accuracy. Note that, for small crack angle of

y g

Fig. 3 Oblique edge crack

Table 1 Normalized stress intensity factors for oblique edge cracks under uniform tension. The
values in the parenthesis are the mapping collocation solutions'® for the panel width/

crack length=10

atdegrey | 0 | 10 | 2 30 40 5 | 50 | e |

R 1123| 1.097| 1.030| o.924| o0.789| o0.715| o.641| o0.473| 0.321
(L.19) | (1.15) [ (1.08) | (0.94) | (0.79) | (0.71) | (0.63) | (0.46) | (0.29)

bn/o. e 0.000| 0.136| 0220 o0.300[ 0.37] 0357 0354 0.3%] o020
©.00 | ©0.12) | 0.29 | 0.32) | (030 | ©.38) ] 038 ] ©.30 | @20

order one, the correction factor for the free
boundary is &, =1. 120, +/7¢ and 2;=0. 687, v/zC
where g, and 7, are remotely applied stress
components given in the equation (19). This
result is substantially different from the solution
of an angled crack embedded in an infinite
plane, especially in the mode I stress intensity.

3.2 Bent Cracks in Half Plane
The configuration of the asymmetric crack

is shown in Fig. 4. For the bent crack length
¢i/¢>0.1, the entire crack-line is divided into
60 segments with an approximately equal int-
erval, in total 120 dislocations. For a crack
with a small kink, 50 divisions with linearly
varying intervals are taken for the main crack
and 10 segments with an equal interval for the
pupative kink. In the equation(13), the stresses
of the uncracked body are 0.(2;) =0, and 7, (z;)
=0 for the main crack, and the equation (19)
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Fig. 4 Bent edge crack
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for the bent. Some of the numerical results are
presented in Table 2,

In the absence of other available solutions to
the author’s knowledge, this solution is comp-
ared with two approximate expressions sugg
ested for the bent crack in an infinite plane.
The stress distributions around a kinked crack
with an infinitesimal kink may be approxima-
ted with those for the main crack without a
kink®, the SIF of which is denoted with K.
Thus we get the kinked crack SIF %, from
the hoop stress g, for the main crack and &

Table 2 Normalized stress intensity factors k,/(v. v/7c) and ky/c./7c) for bent edge cracks under

uniform tension

aec | 0.01 0.1 0.3 0.5
Mode | 1 | 1 I I ] (O
10° 0.170 0.118 1.177 0.124 1. 259 0.134 1. 351 0.144
20° 1.127 0. 229 1.129 0.240 1. 202 0. 258 1. 287 0.277
30° 1.058 0. 328 1.051 0. 343 1.113 0. 365 1.186 0.390
40° 0. 968 0.410 0. 950 0.426 0. 996 0. 448 1. 056 0. 476
50° 0. 862 0.472 0. 832 0. 485 0. 861 0.503 0. 906 0. 529
60° I 0.745 0.512 0.703 0. 520 0.717 0. 529 0.746 | 0. 547
70° 0. 625 0. 530 0. 570 0. 529 0.571 0. 525 0. 587 0.533
80° 1 0. 506 0.528 0. 441 0.513 0.432 0.496 0. 439 0.492
90° : 0.392 0.508 0. 320 0. 477 0. 306 0. 446 | 0. 308 i 0. 429
from the shear stress .. is to regard the main crack as a straight exte-
1 o 30 nsion from the kink, which becomes an angled
ki/K; :Z<3 €oS—-+ COS§> crack with a crack length of (c,+c¢/cosa).
_ ) When this approximation is employed for the
Ey/ K, :l<sm 2. smg—a) (20) . .
4 2 2 bent edge crack, the stress intensity factors are

where K, =1.1215 0. v/7C is used for the main
crack stress intensity factor of the edge crack.
This expression is shown to be accurate to an
embedded crack®, The mode ] SIF k; in the
equation (20) is in good agreement with the
values of ¢,/c=0.01 in Table 2, However, like
an oblique edge crack, a considerable discrep-
ancy is found in the mode I stress intensity
factors. The other approximate scheme proposed
by Kitagawa et al“® for relatively large kinks

expressed as follows with values f;(a) and
fi(a) for oblique edge cracks in Table 1.
kRi=f1(a) o, «/m
ki=[1(2) 0o 7(C1+C/cosa) 1)
This approximation in comparison with the
values in Table 2 is good for the bent crack
length ¢,/¢>0. 1 since the %, values are within
2% up to to the angle a=70° and the %, values
are within 6% up to a=50°. The difference
is further reduced for large ¢,/c znd small
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angle a.

3.3 Symmetrically Branched Edge Cracks

The dislocations in this problem should have
a symmetric distribution about y=0, as shown
in Fig. 5. Along the main crack-line, the non-
zero vectors are b:= (0, 5;). For the branch in
>0, the Burger's vectors are the same as in
the equation (18), and their corresponding ve-
ctors at Z,; along the lower branch are

b, =b;,,(sina, cosa)

bi,o=bi,,(—cos @, sina) (22)

BRN

Fig. 5 Symmetrically branched edge crack
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The dislocational shear stress along the main
crack-line has to be vanished by the symmetry.
Thus, in the equation (13), the stresses at z;
due to a dislocation of unit vector on the bra-
nches should become, for example,

On1(2iy 20i) ——0n,1(2i, Zp:)

+0u1 (25, Zoi) (23)
Similar superpositions apply to the dislocational
stresses. Computations are carried out with 120
dislocations of different magnitudes, and given
in Table 3. Even though the lack of available
solutions prohibits any direct comparison, it
would be interesting to correlate the present
solution to an embedded crack with infinitesimal
branches. The k; values for a> 30° in Table 3
are about 10% larger than the stress intensity
factors obtained from finite element calculati-
ons“*? and the exact K, of a normal edge cr-
ack. And for the mode I values, there is less
than 5% difference between the two solutions
for @=30~75°. In a consequence, the difference
between the embedded and edge cracks is small
in k; and large in k; value. That observation
is similar to the bent crack with an infinitesimal
kink.

Table 3 Normalized stress intensity ki/(o.+/zc) and ki/(o.+/zc) for symmetrically branched edge

cracks
a/e ) 0.01 ) 0.1 0.3 [ 0.5
Mode | 1 'R 1 ol | T

15° 0.714 |  —0.087 0.723 | —0.063 0.868 | —0.061 0.955 | —0.055
30° 0.794 0,036 0.792 0.074 0. 888 0.122 0. 957 0. 149
45° 0.776 0.182 0.752 0.224 0. 804 0.284 0. 852 0.318
60° 0. 690 0. 304 0.643 0.339 0. 655 0.391 0. 680 0. 419
75° 0. 558 0.578 0. 491 0.397 0. 473 0. 426 0.478 0. 438
90° 0. 404 0.397 0.328 0.392 0. 290 0.394 0. 284 0. 386

4. Conclusions

(1) The discrete dislocation method® of calc-
ulating stress intensity factors for cracks in

an infinite plane was extended to the problem
of various edge cracks in half plane.

(2) The stress field around an isolated disloc-
ation in a half plane was derived in a com-
pact form of complex functions. And a com-
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putational scheme for accurate stress intensity
factors from equilibrium Burger's vectors
was suggested and tested upon the problems
with exact solutions such as normal edge
crack in half plane and an angled crack in
an infinite plane.

(3) The method was applied to oblique edge
cracks, and its results were compared with
mapping collocation solutions for similar cra-
cks in a panel with a reasonable agreement.
For the bent and symmetrically branched
cracks, considerable discrepancy was found
between the stress intensity factors of edge
and embedded cracks.
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