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Nomenclature %S:Keqdﬂ
B : Dummy variable L : Gap width(characteristic length)
D; : Inner cylinder diameter(=2R,) Pr : Prandtl number, v/a
k : Thermal conductivity Ra : Rayleigh number based on gap width, gaL?
K : Wall to fluid conductivity ratio, A./ks (T:—To) /ve
K., : Local equivalent conductivity, 7,0 : Dimensionless cylindrical coordinates
’ _g_gﬁ_ ), « (In(ry/7e) / K-+1n(rs/ry) R : Din?ensional cylinc‘lrical radial coordinates
: Cylinder - wall thickness(for both of the
+in(rs/r2)/ K] inner and outer wall)
Kea - Average equivalent conductivity, T:, Ty :Inner surface temperature of the inner wall
* Dept. of Mech. Eng., KAIST and outer surface temperature of the outer

** Member, Dept. of Mech. Eng., KAIST wall
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Vmax  : Maximum angular velocity in the convec-
tion region
a : Thermal diffusivity
v : Kinematic viscosity
@ : Dimensionless temperature
¢ : Dimensionless streamfunction
w : Dimensionless vorticity
Subseript
w : Interface wall
f : Fluid

1. Introduction

Laminar natural convection heat transfer in
a variety of enclosures has been of much in-
terest in the practical view point for many
years. In particular, the horizontal concentric
annulus has attracted great attention because
of its many engineering applications. Examples
are the solar collectors, nuclear reactor de-
sign, aircraft cabin insulation‘®, pressurized-
gas underground electric transmission cable®
and so on.

After the first study of Beckmann, many
authors participated in the research of the
concentric circular annulus problems. Powe,
Carley & Bishop® showed qualitative flow
patterns of air using smoke visualization techni-
que; Eckert & Soehngen® and Hauf & Grigull<®
obtained local heat transfer coefficients using
Mach-Zehnder interferometer. The first numeri-
cal study was made by Crawford & Lemlich®
with Gauss-Seidel iterative method. Kuehn &
Goldstein®
previous experimental and theoretical works,
while they themselves used Mach-Zehnder
interferometer to measure the local and average

offered an extensive review of

equivalent heat conductivities. Rayleigh number
ranges considered were from 2,11x 104 to 9,16
X 10° for the air and water, with the gap to
diameter ratio 0.8. They also made the nu-
merical calculations using the successive over-

relaxation method. Recently, extention of the
research was made by Farouk & Guceri“® to
turbulent regime using the two-equation tur-
bulence modeling, and by Cho, Chang & P-
ark“? to eccentric annulus by using the bipolar
coordinates.

All the studies mentioned above assumed,
however, infinite conductivity and uniform
femperature boundary conditions, while most
of the physical boundaries have, strictly spea-
king, {inite conductivities and non-uniform
temperature distributions. Rotem? studied the
free convection in interaction with a heat
dissipating and conducting core by expanding
the perturbation series of streamfunction and
temperature with the Grashof number and the
Rayleigh number, respectively. In the recent
report by Burch et al.®®, laminar natural
convection flow between vertical plates with
finite conduction rate was studied by using
They used
Partankar-Spalding type finite difference scheme

to obtain the temperature field, heat flux

boundary layer approximation.

distribution at the solid-fluid interface and velo-
city profiles in the boundary layer regions. The
results were compared with the case of infinite
conductivity. D.M. Kim & R. Viskanta¢®
reported about free convective flows in a square
enclosure with non-uniform boundary tempera-
ture distributions, and Chung et al.9® studied
the effect of conductivity and thickness on
natural convection heat transfer from a hori-
zontal circular tube.

The purpose of this paper is to include the
wall conduction effect for a free convective
flow in an horizontal concentric annulus, which
has been so far treated with constant tempera-
ture boundary conditions only. This extension
of the classical concentric annulus problem will
enable engineers to obtain more realistic data
useful for the practical situations. In this study
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numerical solution is obtained for the coupled
conduction-convection governing equations with
the constant thermodynamic property assum-
ptions. The thermal conditions along the solid-
fluid interface are not known a priori to the
calculations, but can be determined iteratively
through coupling of the natural convection and
the two-dimensional wall conduction during the
calculations.

2. Mathematical Formulation

Steady two dimensional incompressible lami-
nar fow is assumed. The Boussinesq approxi-
mation of constant fluid properties except for
the buoyancy force term is supposed to hold.
Due to the vertical symmetry of the problem,
only half of the flow domain is considered.
The thermal conditions at the solid-fluid inter-
faces are not known a priori.

The governing equations are formulated in
cylindrical polar coordinates, where the coor-
dinates are R, measured from the center of
the system, and 6, measured clockwise from
the upward vertical line. The radial velocity,
defined by U=R"10U /06 is positive radially
outward, the angular velocity, defined by V=
—oU /oR is positive in the clockwise direction
for 0° <8< 180°. In order to nondimensionalize
the equation, the following dimensionless vari-
ables are used

— T
gb:ZIf/a, TIR/L, ¢=“TT‘.‘:—IT::T,
yo UL, VL
o o

where a=Fk/pc is the thermal diffusivity, L
is the gap width between the cylinders T3 is
the temperature of the inner surface of the inner
cylinder wall and T, is that of the outer sur-
face of the outer cylinder wall. By introducing
the vorticity w, the governing equations become

Fip=—w Q)
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Po=—pr 4G+ 3 }

—I-Ra[smf) 09 C(;,SB . —gi] @

¢ v_9¢
prp=ugi-+ o~ S5 @3

in the convectxon region and

7ig=0 €))

in the inner and outer conducting wall (see
Fig. 1.

The parameters appearing in the problem
are Rayleigh number Rg, Prandtl number Pr,
the wall to fluid conductivity ratio K(=k./
The last
includes the gap to inner diameter ratio L/D;,

ks, and the geometric parameters.

and the conducting wall thickness to inner
cylnder daimeter ratio £/D;. Detailed geometry
configuration is presented in Fig. 1.

The boundary conditions imposed on this
problem are

2
¢:u:1]:0, w:-——%!;—-
at y=7, and r=r, 5)
and on the symmetry lines
ou
4= g =v=0=—gg-=0 ©

and the temperature Dirichlet conditions
¢=0 at r=7, ¢

Fig. 1 Problem configuration
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=1 at r=r, ®
The thermal conditions at the solid-fluid
interfaces are not known until the problem is
solved. However, we can determine these con-
ditions iteratively as the numerical solution
converges, by imposing the continuity requir-
ement for the temperature and the heat flux
at the solid-fluid interfaces as

¢.= at r=r, and r=r, ©

3. Solution Methodology

The finite difference approach is used in the
present problem to obtain solutions at the
discrete grid points. The central difference
schemes are adopted for the interior node points,
while at the boundary node points one-sided
difference formulations of first order accuracy
are employed. The ADI(Alternating Direction
Implicit) “* schemes are used for the transport
equations (i.e. the vorticity equation and the
energy equation) and SOR (Successive Over
Relaxation) methods are used for the rest of
the equations.

The employment of the grid points are care-
fully monitored to ensure grid-independent
results. Grid stretching is made in the radial
as well as in the azimuthal directions by com-
bining appropriate trigonometric functions. Near
the upper symmetry line §=0° and near the
solid-fluid interfaces where large gradients are
expected, grid points are concentrated. In the
conducting wall regions, uniform mesh is used
in the #-direction and the same mesh size is
used in the @-direction as in the convective
region. The total number of grid points em-
ployed in the computation is 21x25 in 7 and
g-direction, respectively, in the convective
region and 7x25 grid points in both of the

conducting wall regions. The accuracy of the
present numerical procedure is wverified by
comparing the solutions obtained for the case
of uniform wall temperature with the results
of Kuehn & Goldstein‘®,

As noted earlier, to determine the temper-
ature and heat flux at the solid-fluid interfaces,
cyclic interation is performed to get the solution
satisfying the governing equations and boun-
dary conditions. The procedure is initiated by
assuming plausible temperature profiles at the
solid-fluid interfaces. The natural convection
equations are then solved based on the assumed
temperature boundary condition. The heat flux
distribution obtained from this solution is then
used as one of the boundary conditions for the
wall conduction equation. The solution of this
conduction equation yields a new interface
temperature profiles, which are used again as
the new boundary values for the temperature in
the natural convection region. These processes
form a cyclic iteration by which the convection
and conduction regions numerically converge
towards a steady state.

The solution is considered to be converged
when each of the streamfunction, vorticity
and temperature variables meets the following
criterion.

|(B"*'—B") /B"||<107® (11)
where the superscript # denotes an iteration
index and [|+]] themaximum norm.

4. Result and Discussion

The present problem deals with the effect of
finite wall conductivity in a concentric annulus
filled with air. The outer surface of the outer
wall is maintained at a uniform dimensionless
temperature ¢=0 and the inner surface of the
inner wall at ¢=1. Since finite conductivity

is assumed, the thermal conditions along the
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solid-fluid interface are not known a priori.
For simplicity of the problem the inner and
outer wall thickness and conductivity are
assumed same for both of the conducting walls.
The results are obtained for the gap to dia-
meter ratio L/D,;=0.8 and Rayleigh numbers

Ra=103, 10* and 5x10%, These allow us to

()

(a) uniform wall temperatures: 4¢=0. 23,
A4¢=0.1
(b) conducting walls: K=1,
4¢=0.17, 4¢=0.1
Fig. 2 Isotherms andstreamline contours at Ra=

t/D:=0.1,

(b)
(a) uniform wall temperatures: d¢=1.32,
49=0.1
(b) conducting walls: K=1,
4¢=0.93, 4¢=0.1
Fig. 3 Isotherms and streamline contours at Ra=
10*

t/D;=0.1,

(b)

(a) uniform wall temperatures: d¢=2. 47,
A¢=0.1
(b) conducting walls: K=1,
Ag=1.65, 4¢=0.1
Fig. 4 Isotherms and streamline contours at Ra=
5% 10*

t/D:=0.1,

compare the results directly with the previously
published data of Kuehn and Goldstein®. In
order to study the effect of the wall thermal
resistance, calculations performed for the wall
thickness to diameter ¢/D;=0.1 and 0.2, and
the wall to fluid conductivity ratio K=1, 10
and 100, Especially K=10°% is substituted for
K=co condition, and maximum temperature
nonuniformity due to it is less than only 0.
001%. For very small K, the solution conver-
ges very slowly and moreover for K—0(adiba-
tic) the problem becomes ill-conditioned.

4.1 The Isotherms and Streamlines

Each Figs. 2(b), 3(b), 4(b) shows the stre-
amlines and isotherms for different Rayleigh
numbers Ra=10%, 10% 5x104
for fixed parameters Pr=0.7, L/D:=0.8,
K=1 and {/D;=0.1. In the Figs. 2(a), 3(@a),
4(a) juxtaposed are the results of the constant

respectively,

wall temperature problems. The isotherms in
the right hand side {figures emerge from the
inner boundary and are terminated at the outer
boundary. The wall heat conduction effect
reduces the average temperature difference
across the gap, the buoyancy induced flow in
the annulus is weaker than that of the uniform
temperature problem. But both of the flow
patterns are qualitatively very similar despite
the different strength of the recirculating
stream.

4.2 Interface Temperatures
Figs. 5~7 present the temperature distri-
butions along the solid-fluid interfaces for
Rayleigh numbers, Ra=103, 10* and 5x104,
respectively. The buoyancy force lifts the
warmer fluid upward, which generates the
fluid convection and causes a non-uniform heat
flux along the interfaces. The curves show

that temperature at the upper parts of the inner
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Fig. 5 Interface temperature distribution at Ra=
108

Fig. ¢ Interface temperature distribution at Ra=
10*

and outer cylinder is higher. The upward
boundary layer flow of the inner cylinder started
from the bottom is heated while it passes along
the inner cylinder surface. It gives the highest
temperature and so the least heat flux at the

top. The boundary layer flow shedded from
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Fig. 7 Interface temperature distribution at Ra=
5X10*

the inner cylinder forms a hot rising plume
which impinges on the top of the outer cylinder
interface. This makes the upper part of the
outer cylinder hot and of the highest heat
flux. The downward boundary layer near the
outer cylinder interface gets cooled as it moves
downward. So, it has the least heat flux and
the lowest temperature at the bottom. If con-
ductivity of the solid wall is assumed to be
infinite, transmitted heat to the interface will
be removed or supplied with infinite rate and
so uniform temperature can be set up. In
reality all the material have finite conductivity
and thus the finite conduction rate. It makes
interfacial temperature more or less non-uni-
form. In overall, the outer cylinder becomes
warmer due to the impinging plume and the
inner one becomes cooler due to convective
cooling than those of the uniform temperature
problem.

It may be observed from Figs. 5~7 that for
each Rayleigh number, decreasing K or incre-
asing {/D; tends to lower the inner interface
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temperature and to raise the _outer interface
temperature. The smaller K and the larger ¢/
D; result in a larger temperature drop across
the solid wall and therefore smaller tempe
rature difference between the interfaces. These
conditions also contribute to the interface tem-
perature profiles more non-uniform. It is due to
the increased thermal resistances of the wall.
The influence of wall conduction appears incr-
easingly more pronounced with higher Rayleigh
numbers. As the Rayleigh number increases,
the equivalent conductivity K., also increases.
This may be understood as the lowering effect
of the wall to fluid conductivity ratic K.
For example, at Ra=10%, ¢/D;=0.1 andK=100
the maximum deviation from the uniform in-
terface temperature is less than 0.5% only, but
at Ra=5x10% {/D;=0.1 and K=100 the
maximum deviation is more than 1%. Further-
more, in view of the non-uniform interface
temperature distribution the conduction in the
solid wall is clearly two dimensional. Therefore
two dimensional conduction equation should be
solved even though the geometry is axisymme-
tric. Only if the conductivity ratio is suffi-
ciently large and the wall thickness ratio is
sufficiently small, the interface temperature
can be safely assumed to be uniform in the
moderate error bounds.

4.3 Interface Heat Fluxes

Generally in natural convection heat transfer
within an enclosure the heat flux is expressed
by means of the dimensionless parameter Keq
which is called the local equivalent conducti-
vity. It is defined as a ratio of the local con-
vective heat flux to the pure conduction heat
flux.

The local equivalent conductivity distribu-
tions are presented in Figs. 8~11 for Rayleigh
numbers Ra=10* and 5x10% and #/D;=0.1

and 0.2. The heat flux distribution for the
uniform temperature case is also shown in
each figure by solid lines. These solid lines
agree very well to the data of Kuehn and
Goldstein®. For each Rayleigh numbers, at

———— k=1

Fig. 8 Local equivalent conductivity distribution
at Ra=10* and ¢/D:=0.1
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Fig. 9 Local equivalent conductivity distribution
at Ra=10* and ¢/D;=0. 2
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Fig. 10 Local equivalent conductivity distribution
at Ra=5x10* and {/D;=0.1



Laminar Natural Convection in a Concentric Cylindrical Annulus with Wall Conductivity Effect 973

Fig. 11 Local equivalent conductivity distribution
at Ra=5x10* and ¢{/D:=0.2

larger K and smaller ¢/D; values these plots
approach more to the solid lines as expected.
In contrast to the wall temperature plots in
Figs. 5~7, the maximum deviation of the local
heat flux from that of the uniform wall tem-
perature case is less pronounced. For example,
in Fig, 6 the maximum temperature deviation
from the uniform wall temperature case is
about 1% for K=100 and {/D;=0.1: for the
same parameters, however, the maximum heat
flux deviation is less than 0.5%. The average
equivalent conductivity K., also decreases, as K
decreases and £/D; increases. It is because the
large thermal resistance lowers the temperature
difference in the annulus and thus the effective
Rayleigh number, which can be defined from
the temperature difference between the inter-
faces. The influence of the conductivity ratio
K on the heat flux distribution is more signifi-
cant at high Rayleigh numbers. It is because
for high Rayleigh numbers the large value of
the average equivalent conductivity K., plays
the role of lowering the conductivity ratio K.

For the average equivalent conductivity K.,
a correlation similar to Chung et al.“® can be
derived. The computed average equivalent con-
ductivity is almost proportional to both of exp
(—A-K) and ¢/D;, where A is a constant.

Fitting the computed results to one-fourth
power law gives for air
Keo=Ra*%1{0.195—0. 1595exp(—0. 0253
K) (t/Dy)} (12)
where 10*<Ra<5x104 1<K<100, 0.1<¢t/
D;<0.2, The maximum discrepancy of the
computed K¢, to this correlation is less than
2%.
4.4 Velocity Profiles
The angular velocity profiles along the radial
lines at #=45°, 90° and 135° are plotted in
Figs. 12~15 for Ra=10* and 5x10% and for
t/D;=0.1 and 0.2. These angular velocities
are scaled by their maximum values. As it can
be seen from Figs. 12~15, the scaled velocity
profiles are similar to each other. From Figs.
2~4 it was already expected, of course. In

1
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(R-Ry )}/ (Rz-Ry)

Fig. 12 Normalized angular velocity distribution
at Ra=10* and ¢{/D;=0.1

(R=R1)7/(R2-Ry )

Fig. 13 Normalized angular velocity distribution
at Ra=10* and t/D:=0.2
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Fig. 14 Normalized angular velocity distribution
at Ra=5x%10* and {/D;=0.1
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Fig. 15 Normalized angular velocity distribution
at Ra=5%x10¢ and £/D;=0.2

spite of different leveling of the streamline
contours at given Rayleigh numbers, the shapes
of the streamline contours resemble each other.
For example, at Ra=5x10* the ratio of the
maximum velocity of the conducting wall (K=
1, ¢/D;=0.1) to that of the uniform temper-
ature wall is about 67%; the scaled wvelocity
profiles have the maximum discrepancy of
about 10%only. Furthermore, for K=10 and
t/D.:=0.1 the scaled velocity profile discrepancy
is less than about 1%,
velocity agrees upto about 95%. It implies that

and the maximum

the velocity profile is considerably less sensitive
to the influence of the finite wall conductivity.
If a material of low conductivity such as glass,
is used for the hypothetical constant temper-
ature wall for flow visualization purpose, the

observed velocity profiles would give relatively
satisfactory data. Comparison of the curves in
Figs. 12~15 reveals that the wall thickness
effect causes less influence to the velocity pro-
files than to the temperature profiles and the
heat flux distribution along the interfaces.

5. Conclusions

Results of a numerical study of laminar
natural convection coupled with the wall con-
duction effect in a concentric cylindrical ann-
ulus have been presented. Outputs obtained are

_the temperature and local equivalent conducti-

vity distribution along the solid-fluid interfaces
and the velocity profiles in the annulus. The
entire results were compared with case of the
wall with infinite conductivity. Results indicate
that the conduction causes significant influence
on the natural convection heat transfer, par-
ticulary at high Rayleigh numbers, low K and
high ¢/D,. The difference between the case of
the uniform wall temperature and that of the
wall of finite conductivity is smaller for high
K and low #/D; values, at each fixed Rayleigh
number. For very high K and low ¢/D; values,
the results agreed very well with the already
published data of Kuehn and Goldstein.® When
the azimuthal velocity component is normalized
with its maximum value, the velocity profiles
for the wall of finite conductivity and the
uniform temperature wall agreed fairly well
to each other. It implies that the velocity pro-
files are less sensitive to the influence of the
finite conductivity.
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