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' Nomeneclature u,v  :Streamwise and transverse velocity compo-
I . N nent, respectively
g : Gravitational acceleration . ; )
Gr  :Grashof number, g8QS*/kv* Uy :Dimensionless streamwise and transverse
k : Thermal conductivity velocity component;
Pr  :Prandtl number, v/a U=u/ JgBQS/k, v=v/JgBAS/k
Q : Heat flux per unit length from the line heat %,x',y : Streamwise and transverse coordinates, see
source Fig.1
S : Distance between the line heat source and X, Y : Dimensionless coordinates; X=2/8, Y=y/S
the upper plate a : Thermal diffusivity
T : Temperature B : Thermal expansion coefficient
I/} : Boundary layer thickness
* Member, Department of Mechanical Engineering v : Kinematic viscosity
Korea Advanced Institute of Science and 4 : Stream ‘function, S’u dy
Technology ) ) 0 ]
#*¥ Member, Korea Heavy Industries and Construction ¥ : Dimensionless stream function, ¥'=¢/»
Co., Ltd 0 : Dimensionless temperature, k(7T—7.)/@Q
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Subseripts
aw : Adiabatic wall
max : Maximum value at any streamwise station
s : Similarity Solution
w : Wall
00 : Ambient
Superscripts
! : Derivative with respect to transverse coor-
dinate
k : Isothermal plate put in a quiescent environ-
ment

1. Introduction

An important class of mnatural convection
heat transfer is the one related to the buoyancy
driven flows moving freely in an open envirn-
ment. Such flows arise frequently in the nature
due to the temperature gradient caused by the
natural processes. Under certain circumstances,
the interaction of a thermal body with such
free boundary layers becomes important in
engineering. For example, many thermally
active parts in electronic devices are immersed
in the thermal plume caused by others. Similar
applications could be found in the mechanical
systems, nuclear engineering and solar energy
collectors.

Zeldovich in Russia in 1937 is the first who
jescribed the natural convection plume arising
‘rom a horizontal line heat source”. In the
arly 1970's, both Gebhart®® and Fujii®
ound by the similarity method the closed form
olution of the boundary layer equation for
he plume induced by a horizontal line heat
ource. In the present paper we treat the
1ermal interaction of a stationary surface
rith such a free plume. A semi-infinite flat
late, either adiabatic or isothermal, is situated

rtically on the symmetric line of a two-dime-
ional thermal plume, with the leading edge

vertical flat plate

SI x
S
Line heat source

Fig.1 Schematic diagram of the system

of the flat plate at some distance from the
The
plume, which arrives at the flat plate in a
preheated state with a finite velocity, is then

horizontal line heat source; see Fig. 1.

significantly affected by the presence of the
flat plate. Conversely, the heat transfer chara-
cteristics of the flat plate is dependent upon
the condition of the impinging plume very
much.

Flow regime of the incident plume flow at
the leading edge of the plate is determined by
the Grashof number based on the distance S
and the strength of the line heat source Q.
The onset of the transition to turbulence is
known to occur at Gr=6,94x10*®. In the
present study, we restricted our attention to
the Grashof number range in which the flow

along the plate remains laminar.

2. Governing Equations

We assume that the flat plate is very thin.

The mass, momentum and energy boundary

layer equations take the form dimensionlessly
alU ou L5 U

U aX +V_W-— ﬁ+Gr D‘5 aYz (2)
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The plume region (0<<X<1) has the follow-
ing boundary conditions
U _w .
Y oY
U=6=0 as Y—oo 4)
The wall conditions of the flat plate(X>1)
are

Gr'O. 5P7’_1

on Y=0

U=y, -aa—ﬁvaO (Adiabatic wall)
=0, Isothermal wall)
on ¥Y==0 (5)
U=6=0 as Yoo

Here, in the case of isothermal wall a third
paramstesr 4, enters the problem.

3. Method of Solution

The above equations are solved numerically
using the Patankar-Spalding method™® in which
a coordinate transformation is made to norm-
alize the boundary layer thickness. The Pa-
tankar-Spalding method operates in (X, )
coordinate. The transverse coordinate « is
dimensionless stream function defined by o=
@~)/F,—¥), in which ¥; and ¥, are the
values of the stream function at the inner and
outer edges of the boundary layer, respectively.
In the present problem, =0 but ¥, varies
with X as the boundary layer entrains fluid
in the course of its development.

The finite difference grid spans the range
0<w<1 at all X, so that as the boundary layer
thickness varies, the grid automatically follows
the variation. The grid layout encompasses the
following features:

(1) Grid points are sufficiently deployed in
the range 0<w<1. Two hundred points are
used for the adiabatic and isothermal vertical
flat plate, respectively.

(ii) Variable space is used for the grid system
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in the w-direction with the highest concentration
near the wall or symmetry line®.

(iii) A highly refined and carefully distributed
grid points are used in the X-direction in the
wall boundary layer region. Here, the step size
DX in the X-direction is to be determined in the
numerical computational processes.

The present governing equations are parabolic
type; velocity and temperature profiles are re-
quired at an initial plane in the stream direc-
tion. In the present paper, boundary layer
calculation is initiated from an initial plane near
the line heat source, where a closed form solu-
tion is available. The initial data are taken
from the solution of the integral momentum

and energy equation.

U:O 8G7—0‘1P7—0'4.X0'2F (6)
g=0. 3654G1’—°‘2P7’"°'8X'°'6F (7)
where

F=1-6(y/9)*4+8(y/9)°—3(3/6)* (8)
These initial profiles where transformed as a
function of @ by the bisection method.
As a check on the accuracy of the present
finite difference computation, the centerline

temperature obtained by the present method is

-1, 1 ~e—— Gebhart [1]
N ~— Fujii 3]
~—-— Present Study
-1.2 4
-1.4 4
o -
@
2 3
= 1.6 4 )
~1.8 4
-2. ]
T
-1.0 ~0.5 0.0

Log{x/S)

Fig. 2 Comparison of data
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compared with that in references (1) and (3)
in the plume region. In Fig. 2, the function
Logf. is presented as function of Log (x/5).
The close agreement between the different three
methods are quite noteworthy. Especially, the
present method gave a result that agrees with
Fujii e al.® up to the impressive first four

digits below the decimal.

4. Results and Discussion

4.1 Adiabatic Flat Plate

The streamwise variation of the maximum
velocity and the maximum temperature can be
viewed in Fig. 3 for different Prandtl numbers.
It is clearly observable that the viscous drag
exerted by the flat plate contributes to lower-
ing the maximum velocity in the initial stage
right after the impingement of the plume on
the flat plate. This velocity retardation is seen
increased in its degree for more viscous Or
higher Prandtl number fluid in Fig. 3. The in-
itial retardation occurs more rapidly for higher
Prandtl number, see the slope near log (x/S) =0.
After this initial stage, however, the maximum

velocity is increased constantly through the
-1.5%

— - = Temperature

-— VYelocity

Logly,, /(6805/%)%%)

Log(k(T, -T,)/Q)

I 1 i
1807 0.3 T .9 1.2 T
Log{x/S)

Fig. 38 Adiabatic wall temperature and maximum
velocity for the wall plume (Gr=107.
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Velocity profiles for the wall boundary
layer, Pr=1, Gr=10"
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Fig. 4(b) Velocity profilés for the wall boundary
layer, Pr=6.7, Gr=1¢"

continued action of buoyancy force, obeying a

power law
Mmax/(gﬁQS/k)0'5~ (x/S)O.Z (9)
Remarkablely, this 0.2 power dependence is

identical to that of the similarity solution given
in the case when a line heat source is attached
to the very tip of the flat plate®. Therefore,
the x/S value at which the power-law depen-
dence begins to be effective can be regarded as
a measure of distance in which the wall plume
is developing.

On the other hand, the maximum temperature
is decreased continuously in the stream direction
to settle down to a power law

E(Taw—T.) /@~ (x/S)™° 10
With increasing Prandtl number, the maximum
temperature decreases more slowly in the in-
itial stage before it tends to a regular decrease



802

governed by the above power-law relation. This
(—0.6) power variation also corresponds to the
similarity wall plume given in the reference
6).

In the figures 4(a) and 4(b), the aforemen-
tioned initial velocity retardation phenomenon
can be seen more explicitly. The velocity pro-
files of the impinging shear flow is rapidly
deformed to accomodate the sudden change in
the velocity boundary condition from Neumann
to Dirichlet type. It is noted that Y-position
of the maximum velocity is moved away from
the wall as the flow is convected downstream
in the boundary layer: see Fig. 5, also.

In contrast, for the isothermal wall shown
in Fig. 9, the flow is suddenly faced with the
same no-slip condition at the isothermal plate
but is more rapidly accelerated in the downs-
tream direction due to the greater buoyancy
force than the case of the adiabatic wall. In this
case again, the boundary layer rapidly approa-
ches to the similarity profile in the downstream
direction.

Another viewpoint on the development of the
adiabatic wall boundary layer can be convenien-
tly represented by the velocity profiles in Fig.
5. The scaled velocity U/Ugm.x is shown as a
function of Y/X%! for Pr=1 and Gr=1¢"
When the profiles are fully developad, they fall
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Fig. 5 Locally normalized velocity profiles, Pr=1,
Gr=1¢*
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on a single similarity curve in the downstream
direction. For Pr=1, it takes about X=4 until
the similarity is obtained. However, for Pr=
6,7 and 10 the velocity profiles are fully de-
veloped at about X=10: the figure is not shown
here. Thus,
stage is increased with Prandtl number. It is

the distance of the initial fiow

seen from these figures that there is a signifi-
cant profile change between the free plume
and the fully developed flow.

Similarly, the temperature curves are shown
in terms of #(7T—T.)/Q versus Y in Figs. 6
(a) and 6(b). In Fig. 7 the normalized tem-
perature(T—T.,.) / (Taw—T.,) is similarly plotted
as a function of (Y/X%% for Pr=1 and Gr=:
10%. In contrast to the velocity, the temperature
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Fig. 6(a) Tempreature profiles for the wall boun-
dary layer, Pr=1, Gr=1¢"
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Fig. 7 Locally normalized temperature profile, Pr
1, Gr=10?

profiles undergo a remarkably gradual develo-
pement because of the adiabatic condition at
the flat plate.

Similar to the velocity profiles, the tempera-
ture profiles again develop more slowly for the
greater Prandt! numbers. It should be indicated,
however, that the temperature approaches to
the fully developad profile more rapidly than
the velocity does, as can be seen by comparing
Fig.5 and Fig.7. For Pr=1, the major de-
velopment of the temperature profile is accom-
plished between X=1 and X=1.5 while the
velocity profile is fully developed at about
X=2.

4.2 TIscthermal Flat Plate

We first inspect the heat flux from the plate.
We express the heat flux from the isothermal
slate as multiples of that from an identical
slate which is placed in a quiescent fluid
vithout any impinging plume. Here, we take
he quantity about the latter case from the
xisting data®, and will put an asterisk.

The local and global heat flux ratios are
hen given by

a/g*=h/ie = /Sy~ )
/0,4 3Gro- 2 11)

9/q* or A/R*

=" " local
- Tobal
5, globa 44
4. g
- 3.
-~
=
=
o 3. - 2.
[=]
L —
ey
o
2. R
1 ey Sezmws | 0
0.1
0.05
0. |
9.0 0.18 0.36 0.54 0.72

Leg(x/S)

Fig. 8 Overall heat transfer coefficient and local
heat flat flux along the isothemal platel

7/7 =R/ =110 (' /)7 (46/3) Gro-»

(12)
where

1= (= 5p)dwrs
b.=k(T.,—T.)/Q
¢=—0s"(0)/1.414
Here, ¢ and ¢ denote the local and average
heat flux and % and % represent the local and
average heat transfer coefficients, respectively.
The results are presented in Fig.8 for Pr=1
and Gr=10", in which the similarity data ¢ is
taken as 0.401 from the reference (7). The
global heat flux ratio in Fig.8, presented for
0,=0.1 and 0,05, shows that the isothermal
plate is very sensitive to the free plume condi-
tion in the initial developing region. The rela-
tively large velocity of the rising plume at the
instant of interception by the flat plate contri-
butes to the initial peaks in the local and over-
all heat transfer near the tip. Beyond this
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Fig. 10 Temperature profiles for the isothermal
plate, Pr=1, Gr=10", 6.,=0.1

initial developing region, both the velocity and
temperature profiles asymptotically approach
those of the similarity solution. There, the
global heat flux ratio §/g* experiences gradual
change and approaches the unit value ultima-
tely. The local heat flux ratio in Fig. 8 shows
similar trend to that of the global heat flux
explained so far.

Here, we can conclusively speak that the
finite velocity of the incident plume in general
enhance the heat flux from the initial region
near the leading edge of the plate. However,
far downstream the isothermal plate does not
feel the existence of the incident free plume
any more, hence the similar profiles are attai-
ned.

In Figs. 9 and 10, the velocity and the tem-
perature are shown as functions of Y, rvepec-
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tively. As the incident plume impinges against
the flat plate, it is immediately influenced by
the already-existing hydraulic and thermal
boundary layers of the flat plate. As the buo-
vant flow streams upward from the leading
edge of the flat plate, the plume and the in-
herent wall boundary layer should compromise
to constitute a new overall boundary layer.
This emergence of a third new boundary layer
in the downstream direction is clearly seen in
Figs.9 and 10. In Fig. 10, in the near distance
(2/S) from the leading edge of the plate, the
new thermal boundary layer does not penetrate
very far into the old boundary layer. However,
with increasing x’/S, thermal boun-
dary layer grows big enough to engulf the old
one. That is, the wall boundary layer effect

the new

consequently becomes dominating in the down-
stream direction.

5. Conclusion

We have analyzed the interaction of a wall
boundary layer and a free shear layer, which
is induced by a horizontal line heat source below
the vertical flat plate. For the adiabatic ver-
tical flat plate, it is found that the velocity
and temperature profiles becomes fully develo-
ped downstreamwise and have the similar
profiles. The development of these similar pro-
files 1s dependent on the Prandt! number. In
the fully developed region, the maximum velo-
city increases monotonically as X2, while the
maximum temperature decreases as X %%, The
maximum velocity retardation, which is increa-
sed in its degree for higher Prandtl number, is
seen in the initial stage of development due to
the interaction between the skin friction and
the buoyancy force.

For the isothermal vertical flat plate, the
heat transfer from the plate is very sensitive
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to the presence of the line heat source near
the leading edge of the plate. The finite-velocity
approach of the incident flow exerts a domin-
ant influence on the heat transfer in the initial
region over the negative role of the pre-heated
thermal condition of the plume.

The temperature and the velocity profiles
presented in the present paper substantialize
the idea how the wall boundary layer on the
'sothermal plate grows within the already
sxisting free shear layer. With increasing do-
wnstream distance, the new growing boundary
ayer engulfs the old one to form a similar
wofile eventually.
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