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ON THE »-HYPOELLIPTICITY OF THE
BOUNDARY VALUE PROBLEMS

Bu-HyeoN KANG, BYUNG-KEUN SOHN AND DAE-HYEON PAHK

1. Introduction.

Let P(D, D,) be a w-hypoelliptic differential operator of type g with
constant coefficients. Let © be an open subset of R.""' with open plane
piece of boundary ¢ contained in R,". Let @,(D, D,), ...,Q,(D, D,) be
p-partial differential operators with constant coefficients and consider the
boundary value problem:

¢)) P(D,D)u=f in Q

Q.(D, D)ul,=g, 1<v<p
In this paper we give a necessary condition which may be sufficient,
based on the variety of zeros of the characteristic function of the boundary
value problem, in order that all Ct-solutions of (1), #=max {order P,
order Q,, 1<v<y}, shall belong to &, whenever the initial data belong
to such class (called w-hypoelliptic boundary value problem).

For completeness we collect basic spaces and results which we need in
this paper. Let 2 be an open set in R"' and @ be a real-valued
continuous function on R**! satisfying the following conditions;

(@) 0=00) <o+ <w@® +o®, &1 R
w(§) -
® J Tt
€9 w(&)>a+b log(1+|&|) for some constants a and 5>>0
(@) w(® 20 for |§] =17

In [1] Bjorck defines @,(€Q) the set of all ¢ in LI(R"*') such that ¢
has compact support in Q and
6l ., 18 [ere@agon

for all A>>0. Using the inductive limit topology @,(Q) is a Frechet
space and elements in O,(Q) are called test functions. The dual space
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of D,(Q) is denote by D,/ (2) whose elements are called generalized
distributions on Q. When w (&) =log(1+|¢|), the generalized distribution
space is usual distribution space. &,(Q) is the set of all complex valued
functions ¢ is Q such that ¢¢ is in D,(Q) for every ¢ in D,(Q) and
the topology is given by the semi-norms ||@¢¢l; for every >0 and
every ¢ in @D,(Q). The dual space &,(Q) of the space &,(Q) can be
identified with the set of all elements of @,’(Q) which have compact
support contained in £. The following lemmas can be found in [1].

LEMMA 1. Let K be a compact convex set in R with support function
H. If F is an entire function of (n-+1)-complex variables {=£&-+i)=
&1y s Cusr), the following three conditions are equivalent:

(i) For each 2>0 and each >0 there exists a constant C,.. such that
for every 1€ R**!,

[Rn+1 | F($+z77) lelw(@dggcj,zey(n)hm
(i1) For each 2>0 and each >0 there exists a constant C,.. such that
Sfor {=&+imeC".
|F(E+in) | <Cj et relnl=au®

i) FQ =Len+le“'<x-C> ¢(zx)dx for some ¢pcD,(K).

Using above lemma we can show
LEMMA 2. Let K be a compact set in R**l, Then the family of
semi-norms {¢—|0l1;} 0 on D, (K) is equivalent to the family of semi-norms
{g—sup 9D lexp (@) —Hm) — 7] } o
In [3] Hormander difined the differential operator P(D) is hypoelliptic
on Q when «€@’(Q) and P(D)ucC*(Q) implies ucC=(2). He gave
a algebraic characterization of these operators as follows;
(2) |Im |00 when [{]—oc0 on the surface P({)=0.
In [1] Bjorck extends this concept to w-hypoelliptic differential operator
P(D) in Q as €D,/ (Q) and P(D)uc§,(Q) implies ucé,(Q) and
give an algebraic characterizations of these operators with constant
coefficients as follows:
(3 For each A>>( there exists B such that P(£)=0 implies
|7l >Aw (&) —-B
In view of both algebraic characterizations and () we can easily see
that w-hypoellipticity implies hypoellipticty.
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In all that follows we assume that P(D, D,) is w-hypoelliptic differ-
ential operator with constant coefficients. We shall consider the root of
the equation

4) P, 7)=0
where ¢ R". If 7 is a real root, it follows from (2) that & belongs
to the compact set in R* defined by P(¢,¢)=0. That is, if & is outside
a compact set K (we take a sphere) in R”, (4) has no real roots.
Since the roots are continuous function of £([2], p239), in each com-
ponent of the complement of K the number of roots with positive
imaginary part is constant. We shall define that P (D, D,) is of determined
type p if the number of zeros with positive imaginary part is g for all
¢ in the complement of K. When »>>1 all the w-hypoelliptic differential
operators with constant coefficients are thus of determined type. For
ordinary differential operator 2(D,) of order u#, Hormander shows the
following results in [2] which we need in the sequel.

LEMMA 3. Suppose that all zeros of k() have non—negative imaginary
parts. Then there is a constant v depending only on p such that, if u
is a solution of an equation k(D,)u=0, we have

w@| <7a ! 1u@ s, a>0
and

f::lu(t) |dt< (—Z—)T [;lu(t) ldt, 0<a<b.

2. o-hypoelliptic boundary value problems

Let P(D, D) be w-hypoelliptic differential operator of determined
type s« with constant coefficients. we shall denote by 4 the set of all
{eC” such that the equation

(5) P )=0
has exactly g roots with positive imaginary part and none of that is
real. Obviously 4 is open in C" and by hypothesis real & is in & if ¢
belongs to a suitable neighborhood of infinity. We shall estimate the size
of 4 more precisely.

LEMMA 4. Suppose that P(D, D,) is w-hypoelliptic and of determined
type p. Then, given any number A™>0, there is a constant B such that
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A contains all { satisfying
(6) |Im {|<<Aw(Re {)—B.

Proof. Taking the same B in (3), we note that if = is a real and
(6) is fulfilled, we have

I Im(, 7) | =|Im {|<<Aw(Re ©) —B<Aw(Re {,z)—B

which implies P(Z,z) #0 in virtue of (8). Thus (5) has no real root
if (6) is valid and hence the number of roots of (5) with positive
Imaginary part is constant in each components of the set defined by (6).
Now each components of this set contains real points with arbitrarily
large absolute values which proves the lemma.

In order to define w-hypoelliptic boundary value problem on QUo we
need the following

LAMMA 5. Let ¢(z,t) be an element in D,(R"XR). Then ¢(x, t)
is an element in D,(R") for any fized t in R, provided that w in
D,(R") is defined by w()=w(g,0).

Proof. Let ¢,(z)=¢(xz,t) for 2& R" and ¢,(£) the Fourier transform
of ¢,(x) for fixed ¢, that is,

ﬁgz & :‘[Rnequ, ¢, (2)dx

Using inverse Fourier transform, we have
é(x, t) = (2r) —”'lfmﬂgﬁ (£, 1) <= 8gitrg ey
= (2r) —"Jm¢ (&) ¢i<e. ¢

where ¢®:@w*hﬂ&ﬂww=@@
and, for each 1>,

| 8@ 1ee0de=| 14 |erea
=| @01 b venaz|emea
JR”? ) JR
<@ 166 D) e dedr

< (272:)‘1‘1{"*'1]95(5, T) | eAe O gedr

The last term is finite for gD, (R*™') and ¢, has compact support in
R’, which implies ¢, D (R").
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In view of this lemma, the following definition of &,(Q U ¢) make sense.

DerFINITION. &€,(QU o) is the set of all » in &,(Q) such that, for any
peD,(0) and every j=0,1,2, ..., ¢(z)DJu(x,t) converges in D, (o) as
t—0".

One can easily see that both spaces &,(QU¢s) and C*(QUg) are the
same when w(¢)=log(1+1£]). Our definition (1) of w-hypoelliptic
boundary value problem is solution #=&,(QUe¢) whenever f€é&,(Q)
and g, €&,(0), 1<v<pu.

For {&# we denote by 7,({), ..., 7,({) the zeros of (5) with positive
imaginary part and set

k@O=[1¢-r@) and

— det(@ (G i (D))1<k I<p
" CO=" GO =a®)

The function C(¥) is called the characteristic function of the boundary
value problem (1). C({) is defined even in the case of repeated roots

([2], p231).

Our main result is to prove the following theorem

THEOREM 6. Suppose the boundary value problem (1) is w-hypoelliptic
on QUeo. Then, for every number A>(0 there is a constant B such that
(8) £eC” and |Im {|<Aw(Re {) —B
implies (€A and C() #0

Proof. In order to avoid unnecessarily complications we assume that
Q is bounded. Let H (QUo) be the set of all «€C#Qo), which
satisfy the homogeneous boundary value problem

) P(D,D)u=0 in Q

Q. (D, D)ul,=0, 1=v=<p
and have finite norm
N(w)=sup |D"u(2)|
lal sk
Then H (QUg) is a Banach space with respect to this norm. Take an
finite open ball ¢/ in ¢ and ©’ an open cylinder with height a in Q.
Consider the following semi—norms on &,(2’ Ue¢’); For each positive real

4, ¢€D, (@) and €D, (0"), define
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P (@) = llgull+sup I (D<),
0<t<a
for all vu€&,(2'Uo’). According to definition of &,(QUa) it is easily
seen that P}, are semi-norms on &,(2’ U¢’) and with these semi-norms
E,( Ud’) is a Frechet space. By the hypoellipticity of the boundary
value problem (9) and the closed graph theorem the restriction mapping
from H(QUo) to &,(’Ug’) is continuous.

Fix ¢€D,(s’) with $(0)#0. For each real >0 and each oD,
(') there is a constant C,, from the continuity of the restriction
map, such that

(10) P, (w) <Ciy |asru£ | D% (ax, t) |

(z,0)EQ
for every uc H(QU o).

Now suppose {p&# and C({;) =0. Then there is a non-trivial solution

v(t) (see [2]) of the equetion

an key (D) v (2) =0
(@.(Co, D)v) (0) =0, 1<v<p.

The solution u(z, £) =¢i<=.%> v(¢) of (9) is contained in HQUo).
Substituting this solution in (10), we have

(12) sup [l¢ (D)1, <C; sup | D*u(z, 2) |
Oa<lts<a éz.lls)en

. . PN
Since, from lemma 2, on supp (¢) the semi-norms llo (D*u),||; are
equivalent to the semi-norms

PN
sup| ¢ (Du), (C) |ete®-H o= i1
[3={old

with the support function H of supp (¢), (12) can be written

PN
13 sup sup | (D), (©) |etwd-Hcr- 10
al < [d=1 0
0<t<a

<C; sup |D%u(z,t)|
&5t

PO .
Using the facts that ¢(D*),(0) =0, () $({—C) with v,(£)ei<= %>
=D(<%> v(£)) and |D*u(z, )| =e <=5y, (2)|, (13) will be

(14) 20D, (P |9(L=G) | H®= 171 0, (1)
EEAC
<C; sup, =<5 106> 0, (1) .

(z,0)EQ
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Substituting o into ¢ in (14), we have

(15) sup ¢ (0) |er o -HOp= 110! [y, (1) |
(l’a<|‘s<ka '
<CreH1tp) sup | v, (2) |
(r,n)E0
with the support function H, of Q. Applying lemma 3 with d=sup ¢

(r,5}E0
which is greater than a for solutions v, (¢) of k;,(D,) we obtain

(16) 9/3 (0) ere€p—Hg~ 141 sup ].Ua (t) |
00
<Cir(L)r (sup lou () et
. a lal <k
O<t<a
for a constant y depending only on u. Since v(t) is a non-trivial solution

of (11), we have the following inequality from (16) with different
constant C,:
AOCY—H ~ 11| < (O, oH, (1)

which implies
a7 H(®0o) +Hy (M) + |1} < dw (&) —logC;
Since 4 is arbitrary and £ does not depend on A, for given A>0 we

can take A with A>A(k41) and suitable constant B>7e%1 log C,, so

that
(19) 17| = Aw (&) —B
for any {oe# and C({)=0. This implies our result.

REMARK. We showed that, in [4] and [5] the condition (8) for

w(&) =log (1+]¢€]) and w(&) =& |711“ is a characterization of the hypo-

ellipticity and Gevrey hypoellipticity for the boundary value problem,
respectively. Therefore we expect that the condition (8) for general
shall be sufficient condition of w~hypoellipticity.

References

1. G. Bjorck, Linear partial differential operators and generalized distributions,
Ark. Mat. 6(1966), 351-407.

2. L. Hormander, On the regularity of the solutions of boundary problems, Acta
Math. 99(1958), 225-264.



196 Bu-Hyeon Kang, Byung-Keun Schn and Dae-Hyeon Pahk

3. L. Hoérmander, Linear partial differential operators, iSpringer-Varlag. New
York, 1963.

4. D.H. Pahk, On the hypoelliptic boundary value problems, to be printed in
proc. Amer. Math. Soc.

5. D.H. Pahk, On the Gevrey regularity of the boundary value problems, to be
printed in J. Math. Anal. Appl.

6. R.S. Pathak, Quasi-analyticity for hypoelliptic operators, J. Differential
Eqpations 58(1985), 22-42.

Yonsei University
Seoul 120, Korea



