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FUNCTIONS OF x9-BOUNDED VARIATION

SUNG K1 KiM AND JONGSIK KIM

In defining a function of bounded variation on the closed interval [a, &]
we considered the supremum of X |f(I,)| for every collection {I,} of
nonoverlapping subintervals of [a,&] such that [a, 6]= U I, where f(I,)
=f(y,) —f(x,), I,=[z, vn]. A function f is of bounded variation on
[a,b] if Vi(f)=supX | f,)|<oo. Equivalently we could say a function
is of bounded variation on the closed interval [a, &] if there exists a
positive constant C such that for every collection {I,} of subintervals of
[a,8], 51f(I,) ]| <C. Daniel S. Cyphert [1] generalized this idea by
considering other functions # on [0,1] in his Ph.D dissertation. f is
said to be of #-bounded variation on [a,b] if there exists a positive
constant C such that for every collection {I,} of nonoverlapping subint-
ervals of [a,8], 2 1fU)| §CZ/€(Z|)—[_LL—> where |1,l=y,—z, I,=
[, ¥2]. On the other hand, Michael Schramm [2] generalized the above
idea by considering a sequence of increasing convex functions @= {¢,}
defined on [0, oo]: f is of ®-bounded variation on [a,&] if Vy(f;a,b)
=supn ¢, (| fF(I) |)< oo where the supremum being taken over all
nonoverlapping subintervals {I,}, I,=[a,b]. We are going to combine
the above two concepts.

The introduction of the function # can be viewed as a rescaling of
lengths of intervals in [a, 6] such that the length of [a,8]is 1 if #(1)
=]1. Indeed we now require throughout the following that & has the
following properties on [0, 1]:

(1) # is continuous with £(0)=0 and £(1)=1.

(2) # is concave and strictly increasing, and

(3) limf—(gi: oo,

z-+0*

Note: If lim&;)—:c, the set «kBV of s-bounded variation functions
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is the set BV of bounded variation functions. So, to enlarge the class
of functions under consideration we have imposed the condition (3).

EXAMPLE. Icg(:r)—{ x(1~logz), ;;Eg

£.(z) =2 for 0<la<l.

Let @= {¢,} be a sequence of increasing convex functions defined on
nonnegative numbers and such that ¢,(0) =0, ¢,(z)>0.

DEFINITION. Let a real valued function f be defined on the closed
interval [a,b]. f issaid to be of #@-bounded variation on [a, 4] if there
exists a positive constant C such that for every collection {I,} of non-
overlapping subintervals of [,5] such that [q,8]= U1,

Z¢n(lf(l,,)|)<cz,€( | Z,] >

where |I,| is the length of I,. The total #@-variation of f over [a,b]
is defined by £V, (f) =£V,(f; a,b) ¥5upM where the

Sk ( | 1,1 > ’
supremum is taken over all nonoverlapping subintervals {Z,}, I,C [a,&].
We denote by #®BV the collection of all #@-bounded variation functions
on [a,8]. If we take ¢,(2) =z for all #, then *®BV=£BV examined
in [1]. If we take #(z) =z, then s®BV=0BYV examined in [2].

By the above definitions, we have the following

THEOREM 1. 1) For fived D= {§,} and &, =k3, we have s, OBV £,0BV
2) P‘Orﬁxed £ and Q)l: {¢1n}’ ¢2= {¢2n}’ ¢lng¢2m we have
0BV k®,BV
3) For £1<ks and ®1={¢1,}, Pr={¢s,}, P1n= Pouy we have
/€1¢IB VvV /Cz¢zB V.
If L(z) is defined for #>0, L(0)=0 and L is concave then L is
subadditive, i.e., L(a+8)<L(a)+L(b), since
L(a+b)—L®) _ L(a)— —L(0)
(a-+b)—b = a—{

THEOREM 2. Suppose that f is of D-bounded variation on a closed
interval [a,b). Then f is £D-bounded variation on the closed interval
La, ] and £k Vo(f)SVe(f) ice., OBVC1OBYV.
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Proof. For every collection {/,} of nonoverlapping subintervals of
[a, b] such that [a’ b]-_ UL,

= Vo()u(51HL)

= Vo(£) B L)
since 1=« (1) =K(ZM><ZE<—M—>by subadditivity of &
b—al ™ b—a ’
Note: BVZ 4BV in [1].

Let us consider £V,(cf) as a function of variable ¢. If &= {¢,} is a
sequence of increasing convex functions, ¢,(0)==0, z>0, we have
PD.(ea) <cpn(a), 0<c<1. Let £Vy(f)< oo and let 0<<¢<1. Then
kVolef) Zce Vo (f)—0 as ¢c—0. With this in mind, we define a norm
as follows:

Let #0 Vo= {f€4®BV|f(a)=0}. For fex®@BV,, let {Ifll =1l FIl co
=inf {£>0[eV,(F/k) <1},

Lemma 3. 1) «Vo(f/ NI fFI) =1
2) 1f I fIl =1, then £Vo(£)= £l
Proof. 1) Take k> fill, then for any collection {7}

;i(;,t(ﬂxlfl(fb) !//§> eV (f/k) £1.

Thus

eVe(f) 1 iy =sup lim ZUSERUD o
Z,c(b na>
2) For any {I,}, since | f]| £1,
: 3 v i (28 L) LD i
B, (17D DI Er (Ll oo 1 11 (S5 ) <y
By using this lemma, we have the following result with the similar
proof for ®BV, in [2].

THEOREM. («®BVy, || - lI) is a Banach space.
#PBV may be made a Banach space with norm |f(a) |+ || f—F£(a) ||.

DEFINITION. Let a function f be defined on the interval [a,5]. f is
said to be #®-decreasing on [a, 5] if there exists a positive constant C
such that
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o1 £ ) D <ca(L)
for any interval IC[a,b].

Just as every decreasing function is of bounded variation and every
x#~decreasing function is of x-bounded variation, we have the following
obvious generalization of x#®-decreasing function.

LEMMA 4. Suppose that a function f is k®-decreasing on [a,b]. Then
[ is of x®-bounded variation.

Although s-decreasing functions need not be continuous, £@-decreasing
functions are always continuous.

LEMMA 5. Suppose that f is kD-decreasing on the closed interval [a, b].
Then for each a<xy<lb, and a<y,=b, f(xy") and f(y,”) exist.

Proof. Put B=lim f(x) =lim f(2)=A. Let {a;;; and {2/}, be

£-nrot T —re”

the sequences converging to xy such that lim f(x,)= B and hmf(zn )=

o
A. We may assume without loss of generality that ;> >a, >z >
N

01 (1 (o) —f (@) D) Son( T}

Taking limit on both sides gives ¢, (|B—A|) <0
and therefore B—A=0 and f has a right hand limit at a,. A similar
argument shows that f(y,”) exists.

Moreover we have the following

THEOREM 6. Suppose that f is xO-decreasing on the closed interval
[a,b]. Then f is continuous on [a,b].

Proof. Let a<a<lay<ly<b. Then o¢,(|f(a)—f(xp)]) éC/s(%)

and ¢;(|f(y) —f (o) |) <C/c< “>. Letting a—ay and y—a, shows

o (f(a?) —F(zg) |) <0 and ¢, (|f(x-) —f(xg) |) =0. The existence of
F(z*) and f(z-) follows by lemma 5. Thus f(z*)=Ff (o) =f(a-).

THEOREM 7. Suppose that 1= {{1,}, P2= {b2,} and Dy= {¢s,} satisfy
D1 1 (@) @21 (2) S b3, (a) for all n. Then fgEx®3BV for all fe
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£0 BV, g&&®,BV and
IS& 1 w0y =2 f 1} coy [l & 1l vo, for f(a) =g(a)=0.
Proof. Given any I, [a, b], either ¢, (1f (1) 1) =¢a(lg(Z) 1)
or ¢1n( ‘j(lﬂ> |)>¢2n( | g(In) D If ¢ln( If(In) I) = ¢2n(lg(1n) D then
|f(1n)g(1n) I :gbln—l(ql)lnﬂf([n) I))¢2n—l(¢2n(lg(1n> l))
§¢lnhl(|¢2n(|g(ln> l)>¢2n_1<¢2n(1g(1n> l))
= s, Hea (l£(L) D).
Thus @3, (1f(Z,) g(I) 1) =¢2.(1g (L) ).
H ¢, (ST D >de, (eI ]), a similar argument shows that
G (I f L) g (L) 1) <1, (1F ) 1)-

Therefore
Zqﬁdn(lf(lln)ig(] DD < Zd)m(i\fﬁ DD o L¢z;l(||s}(|1n) )
I n
Zs(52) Belly)  Ee(GRl)
Thus fg€x®sBV.
Let €20, without loss of generality assume [|f]],,=1= Il g lil o,

By the convexity of ¢s,(x).

1 If(jn)l |g(1n)l
20, (I fU)eg) 1 /2(1+e)8) 227%”( 1+e¢  1+Fe >

Ze(52) o )
1Z¢ (|f1(in)|> 2295“”('51%)1}
R R

Thus Ve, (f2/2(0+)D) =1, | fgl w0, <2(1+e)? and the theorem
follows by letting &¢—0.

|/\

1.1
5 Tg=1.
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