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ON A COEFFICIENT PROBLEM OF ANALYTIC
SYMMETRIC FUNCTIONS

J.5. HwaNG

1. Introduction.

Through the paper, we consider functions f analytic in the unit disk
D={z: |z|< 1} normalized by f(0)=0 and f/(0)=1. Following Rog-
osinski [5], we let 7" denote the class of all typically-real functions f
which preserve half-plane in the following sense

(1) Im 2z -Im f(z) =0 for zc< /.

Later, Robertson [4] extended the idea of Rogosinski by defining the
class @ of quadrant preserving functions f which satisfy (1) and

(2) Re z - Re f(2) =0 for =< /).

Recently, Y. Abu-Muhanna and T.1I. MacGregor [1] have extended
the quadrant preserving to sector preserving functions. Following their
notations, we let A; and B; be the sectors defined by

) L 20—-D=x - 2jm
Aj= {w : 20—z lk ) /

Larg wel,
k

}and Bj={ei"/tw t we Ay,

where £ is a positive integer and j—1,2, ...,k Also let T4 T4, and Q
be the three classes defined respectively by
JeTy if f(z)€A; whenever 2GA; MDD, j 1,2 ...k,
feT, i f(z) ©B; whenever :QEj np, ;j=1,2,...,k,
Qi="TyNTy, where A denotes the closure of (1.
Clearly, we have 7'y =T and @,--Q. Geometrically speaking, functions
of this kind @; are A-fold symmetric [1, Lemma 5].
We need one more definition P, which denotes the class of all functions
p satisfying p(0) =1, p(z) is real when z is real, p(2) %0 and larg
p(2) |<<x/k for zc . In [1, Theorem 5], Abu-Muhanna and MacGregor
proved that a function f&@Q; if and only if therc is a function peP,
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so that
3 f(2) ='(—1j§k)7,k—P (9.

It is known that if a function f is A-fold fsymmetric then its power
series has the form, see [1, formula (23)],

(4) fz) = Z}ankuznkﬂ for z& D.

In [1, Theorem 7], Abu-Muhanna and MacGregor obtained the sharp
bound for the first two coefficients for functions in Q;. They then posed
the question to solve the coefficient problem of functions in @i The
purpose of this paper is to give an answer as follows

THEOREM 1. If fE€Q4, k=2, and is written of the form (4), then
we have the following upper bound which is sharp when k=2,

(5) | @nps1 | §[<%‘+1> <'§“+2>... <%+n—1)/(n~-1) l:|<72k; Jr*;:*),

n=1,2,....

Notice that Theorem 1 is true for f& T, due to 1, Lemma 6]. Also
notice that the problem of Abu-Muhanna and MacGregor needs to be
solved only for the cases £>>2, because when 2=2 the solution was a
consequence of Rogosinski theorem [5, p. 116], i.e.

(6) lazn+1!§2ﬂ+l, n:l’ 2, .

In fact, (6) derives from |a,,;—a,-1| £2, see Pommerenke [3, p. 55].
The function

o0

f) =5 12 5o 1y

1—22  1—22 &

shows that the solution (6) is best possible.

2. Coefficient estimates of the classes P,.

In equation (3), we observe that all coefficients in the first factor are
positive and therefore all we need to do is to estimate the coefficients
for functions in the classes P4 Notice that the classes P, are well defined
for all positive real numbers.

In [2], we proved that if p(z)=2¢,2" is a function in Py (k>2)
then |c,| <2 tan (x/k). We then conjectured [2, p. 142] that |c,| <4/k.
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We now state and prove this conjecture as follows.

THEOREM 2. If p(2)= 1+ch 2" is a function in P, where k>2 is

real, then we have the following sharp upper bound

(7) lc,,\g—é’—, n=1,2, ...

3. Rogosinski subordination.

To prove Theorem 2, we shall need the following subordinate principle
of Rogosinski [6, Theorem X]. Recall that a function f is subordinate
to another one F if there is a function g analytic and bounded by one
in D such that g(0)=0 and f(2)=F(g(2)) for & D.

THEOREM R. Let f and F be two functions analytic in 1) and normalized
by £(0)=F(0)=0, but f'(0)=c, and F'(0)=C,. If f is subordinate to

F and if I’ is convex and univalent in D, then the n-th coefficient c, of

| satisfies
lcnlélclls n:1,2,... .

4. Proof of Theorem 2.
For convenience, we write
S =p(=x)—1 and Iz )"‘(1+z>°/k'—1 .

Then by the definition of P;, we can see that f is subordinate to F.
Clearly, the function F is convex and univalent in D. It follows from
Theorem R that

el 1G] =, n=1,2,.

This proves the assertion (7).
The function

pa(z) = (%—;—)2”21 + %z—# ,

belongs to the class P which shows the sharpness of (7). This completes
the proof.

5. Proof of Theorem 1.
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Let fQ;, then f can be represented by equation (3) for some function
peP;. Clearly, the first factor of f can be expanded as

®) (—1—:2'5 Zb ST
where b,,kﬂ:%(%—{—l)...<—Z)—+n-1>/n!.
Moreover, by expanding p as a power series,
p() =1+ Zew" for z& D,

we obtain the inequality (7). For convenience, we write t=4/k and
we define “the maximum coefficient function” of p by

(9 pe(2)==1-+ f]ltz

Since all coefficients of (8) and (9) are positive, it follows from (3),
(4), and (7) that the coeflicients a,z.; of f are dominated by that of
the following function

f,(z):ﬁ/—klbt(zk): (1— k)Z/k <1+ —ok )

er B (Bl () Bt G

This concludes the assertion (5) and the proof is complete.

6. Extension of Herglotz formula.

l*mdlly, we shall extend the representation of Herglotz formula, see
[3, Theorem 2.4]. For this, we define the new class Pr={p : p(0) =

1 and |arg p(2)|<z/K.

THEOREM 3. Let k=2 be real and let P be the set of all probability
measures on [0, 21). Then a function pE Py if and only if

(9) p(z)= {J Oziiz_‘ti (t)lZ/k Sfor some 7).

Moreover, the n—th coefficient ¢, of p satisfies the sharp inequality
(10) PAESS =12,

Proof. Clearly, p Py if and only if pt/2€ P, Hence the assertion
(9) follows from Herglotz formula. And the assertion (10) is a
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consequence of Theorem 2.

There is an interesting subclass of B; which can also be characterized
by an analogue of Herglotz formula.

THEOREM 4. Let k=2 be real, P the set of all probability measures
on [0, 2x], and Py* the set of all functions P, on D defined by
(" _li":t_z_>2/b
1) pute) =[ [(FEEE )erkantey (e D).
Then the class Pi* is a proper subset of Py for all k=4 and the n-th
coefficient ¢, of p, satisfies

(12) el Sla®ISt,  a=12..,

where ¢, (k) is the n—th coefficient of the function LA4=2)/(1—=2)]2/4

Proof. Clearly, the kernel functions are
1"["6—“2 ~
<m>2/kepk for a].l tE[O, 27C:|,

and the set {w: |arg w|<{z/k} is convex. Since each function p, defined
by (11) is a convex combination of those kernel functions, hence P
belongs to the class P;. This shows that the class P.* is a subset of b,

To prove that the class Pi* is a proper subset of P;, we shall first
prove the inequality (12). To do this, we need only expand the function
P, as a power series. According to (11), it is easy to see that

?.(2)= 1—]—2[% (k)J‘z"eqntd# () jlzn.

This together with Theorem 2 yields the inequality (12).

In particular, when 2=2 we have

(13) ca(k) =8/k and ¢,(4)=1/2 for k=4, _
With the help of (13), we are now able to prove that the class Py
is a proper subset of P; for each #=4. For this, we let p(2) =1+ (sin
z/k)2%. By a simple computation, we find that p= P, for 2=4. Since

sin w/k>7/k—n3/6k3>8/k2 for k=4,

it follows that pe& Py*. This completes the proof.
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