A NOTE ON HOLOMORPHIC VECTOR BUNDLES OVER COMPLEX TORI

JAE-HYUN YANG

1. Let L be a lattice in \mathbb{C}^n . A holomorphic automorphic factor of rank r for the lattice L is a holomorphic mapping

$$J: L \times \mathbb{C}^n \longrightarrow GL(r; \mathbb{C})$$

such that

- (1) $J(\alpha, z)$ $(\alpha \in L, z \in \mathbb{C}^n)$ is holomorphic in z,
- (2) $J(\alpha+\beta,z) = J(\alpha,z+\beta)J(\beta,z)$ for all $\alpha,\beta \in L$ and $z \in \mathbb{C}^n$.

We have the following free action of L on $\mathbb{C}^n \times \mathbb{C}^r$ defined by

$$(z,\xi)\alpha = (z+\alpha,J(\alpha,z)\hat{\xi}), \alpha \in L, z \in \mathbb{C}^n, \xi \in \mathbb{C}^r.$$

The quotient of $\mathbb{C}^n \times \mathbb{C}^r$ by this group action of L is a holomorphic vector bundle E_J over the complex torus $M = \mathbb{C}^n/L$. Holomorphic vector bundles over the complex torus $M = \mathbb{C}^n/L$ are always obtained in this way.

In this short paper, we characterize projectively flat vector bundles over a complex torus which is simple.

2. A holomorphic vector bundle over a complex manifold is said to be simple if its endomorphisms are all scalars. It is easy to show that the vector bundle E_J over the complex torus $M = \mathbb{C}^n/L$ defined by an automorphic factor J is simple if and only if scalars are holomorphic maps $B: \mathbb{C}^n \to GL(r; \mathbb{C})$ such that

$$B(z+\alpha)$$
 $J(\alpha,z)=J(\alpha,z)B(z)$ for all $\alpha \in L$.

In his paper [1], Morikawa shows the following theorem.

THEOREM. Let J be a holomorphic automorphic factor of rank r for the lattice L in \mathbb{C}^n such that

Received March 14, 1986.

This work was partially supported by the Ministry of Education.

- (1) the associated vector bundle E_{J} is simple,
- (2) $J(\alpha,z+\beta)J(\alpha,z)^{-1}$ $(\alpha,\beta\in L)$ are constants.

Then there exists an isogeny $\psi: N \rightarrow \mathbb{C}^n/L$ of degree r and a line bundle F over the complex torus N such that E_J is the direct image of F under the isogeny ψ .

REMARK. We can also show that $T_g^*F\ncong F$ for all $g\in \ker \psi$, where T_g is the translation of the complex torus N by $g\in N$.

Let J be an automorphic factor of rank r for the lattice L in \mathbb{C}^n satisfying the hypotheses in the above theorem. Then, by Oda [2], the homomorphism $H^j(M, \mathcal{O}) \to H^j(M, \operatorname{End}(E_J))$ induced by $\mathcal{O} \to \operatorname{End}(E_J)$ is an isomorphism for each j, where $M = \mathbb{C}^n/L$. Therefore we obtain, for each j,

$$\dim_{\mathbf{C}} H^{j}(M, \operatorname{End}(E_{J})) = \dim_{\mathbf{C}} H^{j}(M, O) = \binom{n}{j}.$$

3. Let E a holomorphic vector bundle of rank r over a complex torus $M = \mathbb{C}^n/L$ with the corresponding automorphic factor $J: L \times \mathbb{C}^n \to GL$ $(r; \mathbb{C})$. Let

$$p:GL(r;\mathbf{C})\to PGL(r;\mathbf{C})$$

be the natural projection to the projective general linear group and define

$$\hat{J} = p \circ J : L \times \mathbb{C}^n \to PGL(r; \mathbb{C}).$$

Then \hat{J} is an automorphic factor for the projective bundle P(E) over M.

We assume that E is projectively flat. Then P(E) is defined by a representation of L into $PGL(r; \mathbb{C})$. Replacing J by an equivalent automorphic factor, we may assume that \hat{J} is a representation of L into $PGL(r; \mathbb{C})$. Since \hat{J} is independent of z, we can write

$$J(\alpha, z) = f(\alpha, z)J(\alpha, 0), \quad \alpha \in L, \quad z \in \mathbb{C}^n,$$

where $f: L \times \mathbb{C}^n \to \mathbb{C}^*$ is a scalar function. Since det J is an automorphic factor for the line bundle det E, we may write

$$\det J(\alpha, z) = \chi(\alpha) \exp \left\{ H(z, \alpha) + \frac{1}{2} H(\alpha, \alpha) \right\}, \alpha \in L, \quad z \in \mathbb{C}^n,$$

where $X: L \to \mathbb{C}^*$ is a semi-character of L, and H is an Hermitian form on \mathbb{C}^n . Since $f(\alpha, 0) = f(0, z) = 1$,

$$f(\alpha, z) = \exp\left\{\frac{1}{r}H(z, \alpha)\right\}, \quad \alpha \in L, \quad z \in \mathbb{C}^n.$$

Now we assume that E admits a projectively flat Hermitian structure h. Then we may assume that \hat{J} is a representation of L into PU(r). Let \tilde{h} be the induced Hermitian structure in $\tilde{E} = \pi^* E = C^n \times C^r$, where $\pi: C^n \to C^n/L$ is the natural projection. Then

(A)
$$\tilde{h}(z) = {}^{t}\overline{J(\alpha, z)}\tilde{h}(z+\alpha)J(\alpha, z), \quad \alpha \in L, \quad z \in \mathbb{C}^{n}.$$

The curvature form Q of E is of the form

$$\Omega = \delta I_r$$
, δ is a 2-form.

Since its trace is the curvature of det E, we have

$$\delta = \frac{1}{r} \sum_{j,k} I I_{j\bar{k}} dz^j \wedge d\bar{z}^k,$$

with constant coefficient $H_{i\bar{k}}$. Thus

$$\begin{split} \widetilde{\omega}(z) &= \widetilde{h}(z)^{-1} \partial \widetilde{h}(z) \\ &= -\frac{1}{r} H(dz, z) I_r + \Xi(z), \end{split}$$

where $H(dz,z) = \sum H_{j\bar{k}}\bar{z}^k dz^j$ and \bar{z} is a holomorphic 1-form with values in the Lie algebra of $CU(r) = \{cU; c \in C^*, U \in U(r)\}$. Since $\bar{z} + {}^t\bar{z} = \psi I_r$ (ψ is a 1-form) and \bar{z} is holomorphic, it follows that

$$\mathcal{Z}=\theta I_r$$
, θ is a holomorphic 1-form.

By a simple calculation, we obtain

$$E(z+\alpha) = E(z), \quad \alpha \in L.$$

That is, θ is a holomorphic 1-form on $M=\mathbb{C}^n/L$. Hence

$$\theta = \sum_{j=1}^{n} C_j dz_j$$
, C_j 's are constants.

If we solve the differential equation

$$\tilde{h}^{-1}\partial\tilde{h} = \tilde{\omega}(z) = -\frac{1}{r}\sum H_{j\bar{k}}\bar{z}^{k}dz^{j} + \sum_{j=1}^{n}C_{j}dz^{j},$$

we obtain

$$\tilde{h}(z) = \tilde{h}(0) \exp\left\{-\frac{1}{r}H(z,z) + C(z) + \overline{C(z)}\right\},$$

where $C(z) = \sum_{j=1}^{n} C_j z^j$.

Using the isomorphism of the bundle \tilde{E} defined by

$$(z,\xi)\in \widetilde{E}\longrightarrow (z, \exp\{C(z)\}\xi)\in \widetilde{E},$$

we may assume that C(z) = 0. By a linear change of coordinates in C^r , we may assume that $\tilde{h}(0) = I_r$. Therefore

$$\hat{h}(z) = \exp\left\{-\frac{1}{r}H(z,z)\right\}I_r, z \in \mathbb{C}^n.$$

By the formular (A)

$$J(\alpha, z) = U(\alpha) \exp\left\{\frac{1}{r}H(z, \alpha) + \frac{1}{2r}H(\alpha, \alpha)\right\},\,$$

where $U(\alpha) = J(\alpha, 0) \exp \left\{ -\frac{1}{2r} H(\alpha, \alpha) \right\}$ is a unitary matrix.

In summary, if E admits a projectively flat Hermitian structure h, its associated automorphic factor J can be written as follows:

(B)
$$J(\alpha, z) = U(\alpha) \exp\left\{\frac{1}{r}H(z, \alpha) + \frac{1}{2r}H(\alpha, \alpha)\right\}, \quad \alpha \in L, \quad z \in \mathbb{C}^n,$$

where

- (i) H is an Hermitian form on \mathbb{C}^n and its imaginary part A satisfies $\frac{1}{\pi}A(\alpha,\beta) \in \mathbb{Z} \text{ for } \alpha,\beta \in L,$
- (ii) $U: L \to U(r)$ is a semi-representation in the sense that it satisfies $U(\alpha+\beta) = U(\alpha) U(\beta) \exp\left\{\frac{i}{r}A(\beta,\alpha)\right\}, \quad \alpha, \beta \in L.$
- 4. Let E be a simple holomorphic vector bundle of rank r over the compex torus $M = \mathbb{C}^n/L$ which admits a projectively flat Hermitian structure. Then its automorphic factor J is given by the formula (B). Then, for all $\alpha, \beta \in L$,

$$J(\alpha, z+\beta)J(\alpha, z)^{-1}$$

$$=U(\alpha) \exp\left\{\frac{1}{r}H(z+\beta, \alpha) + \frac{1}{2r}H(\alpha, \alpha)\right\}$$

$$U(\alpha)^{-1}\exp\left\{-\frac{1}{r}H(z, \alpha) - \frac{1}{2r}H(\alpha, \alpha)\right\}$$

$$=\exp\left\{\frac{1}{r}H(\beta, \alpha)\right\}$$

By Theorem (Morikawa), there exists a sublattice \tilde{L} of L and a line bundle F over $N=\mathbb{C}^n/\tilde{L}$ such that $[L:\tilde{L}]=r$ and $\phi_*F\cong E$, where $\phi:\mathbb{C}^n/\tilde{L}\to \mathbb{C}^n/L$ is the natural isogeny. And we have

$$H^{j}(M, \mathcal{O}) \cong H^{j}(M, \operatorname{End}(E))$$
 for all j

and

$$\dim_{\mathbb{C}} H^{j}(M, \operatorname{End}(E)) = \binom{n}{j}.$$

We set

$$\omega_{\alpha}(z) = J(\alpha, z)^{-1} dJ(\alpha, z), \quad \alpha \in L.$$

Then we obtain a system of integrable connections satisfying

- (1) $d\omega_{\alpha}(z) + \omega_{\alpha}(z) \wedge \omega_{\alpha}(z) = 0$
- (2) $\omega_{\alpha+\beta}(z) = \omega_{\alpha}(z) + J(\alpha, z)^{-1} \omega_{\beta}(z+\alpha)J(\alpha, z), \alpha, \beta \in L.$

If we write

$$\omega_{\alpha}(z) = \sum_{l=1}^{n} A_{\alpha l}(z) dz_{l} \quad (\alpha \in L, \quad 1 \leq l \leq n),$$

then all $A_{\alpha l}(z)$ are constants. Indeed,

$$\begin{array}{l} \omega_{\alpha}(z+\beta) - \omega_{\alpha}(z) \\ = J(\alpha, z+\beta)^{-1} dJ(\alpha, z+\beta) - J(\alpha, z)^{-1} dJ(\alpha, z) \\ = J(\alpha, z+\beta)^{-1} \ d(J(\alpha, z+\beta)J(\alpha, z)^{-1}) \ J(\alpha, z) \\ = 0. \end{array}$$

Since $M = \mathbb{C}^n/L$ is compact and $A_{\alpha l}(z+\beta) = A_{\alpha l}(z)$ $(\beta \in L)$, all $A_{\alpha l}$ are constants.

And we have $\omega_{\alpha}(z) \wedge \omega_{\alpha}(z) = 0$ and so $[A_{\alpha l}, A_{\alpha m}] = 0$ for all $\alpha \in L$, $1 \le l, m \le n$. If we define

$$\widetilde{J}(\alpha, z) = J(\alpha, 0) \exp\left(\sum_{l=1}^{n} A_{\alpha l} z_{l}\right)$$

then we have

$$\tilde{J}(\alpha,z)^{-1}d\tilde{J}(\alpha,z) = J(\alpha,z)^{-1} dJ(\alpha,z).$$

Since $\tilde{J}(\alpha, 0) = J(\alpha, 0)$, we have $\tilde{J}(\alpha, z) = J(\alpha, z)$ ($\alpha \in L$). It is easy to show that the total Chern class of E is given by

$$c(E) = \left(1 + \frac{c_1(E)}{r}\right)^r.$$

That is, the k-th Chern class of E is given by

$$c_k(E) = {r \choose k} \frac{1}{r^k} c_1(E)^k.$$

It is also easy to show the following identity:

$$c_2(\text{End } E) = -(r-1)c_1^2(E) + 2rc_2(E) = 0.$$

In summary, we have

THEOREM. Let E be a simple holomorphic vector bundle of rank r over the complex torus $M=\mathbb{C}^n/L$. Assume E admits a projectively flat Hermitian structure. Let J be its associated automorphic factor for L given by the formula (B). Let $\omega_{\alpha}(z) = J(\alpha, z)^{-1}dJ(\alpha, z)$ ($\alpha \in L$) be a system of integrable connections. Then

- (1) There exists an isogeny $\phi: N \to M$ of degree r and a line bundle F such that $\phi_*F \cong E$.
 - (2) $H^{j}(M, \mathcal{O}) \cong H^{j}(M, \operatorname{End}(E))$ for all j.
 - (3) All $A_{\alpha l}(\alpha \in L, 1 \le l \le n)$ are constants and $J(\alpha, z) = J(\alpha, 0)$ exp $(\sum_{i} A_{\alpha l} z_{l}), \alpha \in L, z \in \mathbb{C}^{n}$.

$$(4) c(E) = \left(1 + \frac{c_1(E)}{r}\right)^r$$

and

$$c_2(\text{End } E) = 0.$$

References

- 1. H. Morikawa, A note on holomorphic matric automorphic factors with respect to a lattice in a complex vector space, Nagoya Math. J. Vol. 63(1976), 163-171.
- T. Oda, Vector bundles on an elliptic curve, Nagoya Math. J. Vol. 43(197 1), 41-72.

Inha University
Incheon 160, Korea