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NOTES ON CERTAIN SUBCLASS OF ANALYTIC
FUNCTIONS INTRODUCED BY SALAGEAN

SHIGEYOSH! OwaA, MILUTIN OBRADOVIC AND SANG KEUN LEE

1. Introduction

Let A be the class of functions of the form
(1.1) F@ =2+ Jaw

which are analytic in the unit disk U={z: [2|<1}. We denote by S
the subclass of A consisting of all univalent functions in the unit disk
U. A function f(z) belonging to A is said to be starlike of order a if
and only if
zf ! (z) ~
(1.2) Re{--—f o~ I>a
for some a (0=a<{1), and for all z& U. We denote by S*(a) the class
of all starlike functions of order @ in the unit disk U. A function f(z)
belonging to A is said to be convex of order a if and only if
2f" (2)
(1.3) Re {1+ ) }>a
for some a (0sa<{1),and for all z€ U. Also we denote by K(a) the
class of all convex functions of order « in the unit disk U. Note that
f() €K (a) if and only if zf’(z) ©8*(a), and that
K(@) SK(0)=K, S§*(a) =8*(0)=S*, and K(a)CS*(a)CS8
for 0<a<1 (cf. [8]).
The classes S*(a) and K () were first introduced by Robertson [14],
and were studied subsequently by Schild [18], MacGregor[6], Pinchuk
[13], Jack [3], and others.

For a function f(z) in A, we define
(1. 4) D (2) =f(2),
1.5) Df(2) =Df (z) =2f(z),
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and
(1.6) D*f(z) =D(D*f(2)) (neN=1{1,2,3,...}).
With the help of the symbol D#f(z), Salagean [17] introduced the

subclass S,(a) of A consisting of functions f(z) which satisfy the cond-
ition

(1.7) Re {%@_] ~a (n&N,=NU {0})
for some & (0=<a<'1), and for all z& U.

Since

Dif(z) _ =/"(2)

1. —

(1.8 DA G
and

(1. 9) D2f (2) —1+ =f" ()

DU f (2) fi=)
we observe that Sy(e) =S*(a) and $;(a) =K (a).

Let f(z) and g(z) be analytic in the unit disk U. Then a function
f(2) is said to be subordinate to g(z) if there exists an analytic function
w(2) in the unit disk U satisfying w(0)=0 and |w(z)|<1 (z€U)
such that f(2) =g(w(z)). We denote by f(z) <g(z) this relation. In
particular, if g(z) is univalent in the unit disk U the subordination
f(z) <g(2) is equivalent to £(0) =g(0) and F(U)cg(U).

The concept of subordination can be traced back to Lindelsf [4], but
Littlewood [5] and Rogosinski [16] introduced the term and discovered
the basic relations. Recently, Suffridge [19], Hallenbeck and Ruscheweyh
[2], Miller and Mocanu [8], Obradovié [10], and Fukui, Sakaguchi

and Owa [1] proved various results for subordinate functions.

2. Application of Robertson’s Result

We begin with the statement of the following result due to Robertson

[15].

LEMMA 1. Let f(z)&8. For each 0=t=1 let F(z,t) be regular in
the unit disk U, let F(z,0)==f(z) and F(0,8)=0. Let p be a positive

real number for which

(2.1) F(z) =lim F(z8) —F(z,0)

1= +0 2t?
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exists. Let F(z,t) be subordinate to f(z) in U for 0<¢ <1, then

(2.2) Re{ ;% } <0 (ze U).

If in addition F(z) is also regular in the unit disk U and
Re {F(0)} +#0, then

(2.3) Re {i(%} 20 (ze U).

Applying Lemma 1, we prove
THEOREM 1. Let f(z) €A, 0=a<1, nEN,, and 0=t=<1.
Further, let

(2. 4) £ =12 (DY (®) —aD* ()}
and

25 Gl =12 (10D &) —a(-A DY () <g().
Then the function f(z) belongs to the class S,(a), where

(2.6) EOR EAQNA

Proof. We employ the same manner as used by Obradovié [10]. It is
easy to see that

2.7 G(z)hhrPOG(z, t) —G(z, 0)
- hm_aG_(z_’M
v
(1—awz’
and, that
(2.8) ¢ (@) = (D (@) —a (D ()]

Furthermore, it follows from (2.7) that Re{G(0)} =—1/(1—a) 0.
Consequently, by using Lemma 1 when p=1, we obtain
g _ (D" (2))"  z(D*f (=)’
2.9 Re{ G(z) } Re {“ D*f (2) D" (z) }

ol B <
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or
D**1f (2)
(2- 10) Re [W} >a (zE U) .
This completes the assertion of Theorem 1.

Taking n=0 in Theorem 1, we have

COROLLARY 1 (Obradovié¢ [10]). Let f(z) €4, 0=<a<1, and
0=t=< 1. Further, let

(2.11) g(2) :Tég {f (2) —a.f:—j;(s—slds} =8
and
(2.12) G(z 1) =1_i; {(1~—t) £(2) —a(l—tz)J-:-jés-}—ds} <2(2).

Then the function f(z) belongs to the class S*(a).
Taking n=1 in Theorem 1, we have

COROLLARY 2 (Obradovié [10]). Let f(z) €4, 0<a<l, and
0=t=1. Further, let

(2.13) g = fef' () —af ()} 8

11—«

and
214 6D =1L (1-05 () —a(-Df () <4 ().
Then the function f(z) belongs to the class K(a).

3. Application of Miller’'s Result

We need the following lemma due to Miller [7] (and Miller and
Mocanu [9]).

LEMMA 2. Let ¢(u,v) be a complex function,
¢ :D——>C,DCCXC (C is the complex plane)

and let u=uy+iuy, v=v;+ivy. Suppose that ¢ satisfies the following
conditions:
(1)  ¢(u,v) is continuous in D;

(i) (1,0)€D and Re{p(1,0)}>>0;
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(i) Re{d(iug, vi)} <0 for all (lus,vi) €D and such that
v =— (14u?) /2.
Let p(2) =1-+piz+poetoe pe regular in the unit disk U, such that
(2(2), 26’ ())ED for all ze U, I§a
Relp(p(2), 20" (2))} >0 (zc U),
then Re{p(2)} >0 for zc U.

An application of Lemma 2 to the class S,(a) derives

THEOREM 2. Let the Sunction f(z) defined by (1.1) be in the class
Sq(a) with 0=a<<1 and nE Ny, Then

3.1) Re{[ﬂi(i)]ﬁ} >273<T—1T+1‘ (e U),

where 0<28(1—a) <1.
Proof. Define the function p(z) by
(3.2) A PLE Vo) 4p

where A=B+1 and B=1/28(1—a). Then 2(2) is regular in the unit

disk U and () —1. Differentiating both sides of (3.2 logarithmically,
we obtain

g 2D @) wpx)
(5.9 D) Ee@ s b
that is,
Y D) &)
(u- 4) W (a4 ‘8 {p(z)T—B} i [\1 (t) .
This shows from fR)eS,(a) that
9 r > z/)’ (z) (1 — ~ =
(S J) Re {m l (1 a’)} >0 (re U).

Setting p(2) =u=u,+4u, and zp'(2) =v=uv; +iv,, we define the function
96(“9 Z’) by

(3.6) & (uy v) :3(7?’@)5% (1—a).
It follows from (3.6) that $(u, v) is continuous in [)— (C—{-B}) xc,
(1,0)eD and Re 01,0} =1-a>, and, for all (ju,, v1) € D such that
n=— (1+u?) /2,
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3.7) Re {6 (iuz, v1)} = qu ﬁﬂﬂru—@
~ Sty T A
= 3Gy (10
=0

provided that 0=<a<{1 and 0<25(1—a) =1. Consequently, the function
¢ (u, v) satisfies the conditions in Lemma 2. Thus, with the help of

Lemma 2, we have
Relp(2)}>>0 (z= U),

or
(3.8) R44¥§§1T~4>n (ze U).

This completes the proof of Theorem 2.

Letting #=0 in Theorem 2, we obtain

CoroLLARY 3 (Owa and Obradovié [12]). Let the function f(z)
defined by (1.1) be in the class S*(a) with 0=a<1. Then

(8.9) {[f(f “ ~ 25 1a)+1 =el),
where 0<28(1—a) =1.

ReEMARK 1. Making a=1/2 and =1 in Corollary 3, we have the
result by Miller and Mocanu [9].

Finally, taking n=1 in Theorem 2, we have

COROLLARY 4 (Owa and Obradovi¢ [12]). Let the function f(z)
defined by (1.1) be in the class K(a) with 0=a<{1. Then
1
« ﬁ — z ,
(3.10 Re{(/()9) >gprrios (e V)

where 0<28(1—a) £1.

ReMARK 2. Making 8=1/2 in Corollary 4, we have the result by
Obradovié and Owa [11].
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