ON THE BICENTRALIZERS OF VON NEUMANN ALGEBRAS

SANG OG KIM

1. Introduction

Connes [2] showed that if M is an injective σ -finite factor of type III₁ and $B_{\phi} = C1$ for some normal faithful state ϕ on M then M is isomorphic to the Araki-wood factor. In [7], Haagerup has succeeded to show that if M is an injective factor of type III₁ with separable predual, then $B_{\phi} = C1$ for every normal faithful state on M. Since injective factors of type III_{λ}, $0 \le \lambda < 1$, were classified [9], this together classifies all injective factors of type III with separable predual. It is not known for non-injective case. In this paper we consider some conditions under which the bicentralizers be trivial.

2. Preliminaries

Let M be a von Neumann algebra with a normal faithful state ϕ , we define the bicentralizer B_{ϕ} of ϕ as follows.

$$B_{\phi} = \{ a \in M | x_n a - a x_n \rightarrow 0 \text{ } \sigma\text{-strongly whenever}$$

 (x_n) is a bounded sequence in M such that $||x_n \phi - \phi x_n|| \rightarrow 0 \}.$

Recall that M is of type III₁ if M has no nonzero finite projection and the set $\{t \mid \sigma_t^{\phi} \text{ is inner}\}$ is equal to $\{0\}$ for every normal faithful state ϕ where σ_t^{ϕ} is the modular automorphism induced by ϕ . Let M be with separable predual. A normal faithful semifinite weight ϕ on M is called dominant if (i) $M_{\phi} = \{x \in M \mid \sigma_t^{\phi}(x) = x, t \in \mathbf{R}\}$ is properly infinite, (ii) for every $\lambda \geq 0$, $\lambda \phi(x) = \phi(uxu^*)$ for some unitary u in M.

Let N be a von Neumann algebra with a normal faithful trace τ and $(\theta_s)_{s\in\mathbb{R}}$ a continuous one-parameter group of automorphisms such that $\tau \circ \theta_s = e^{-s}\tau$ and let $M = N \times_{\theta} \mathbf{R}$ be the crossed product of N by θ . Then

Received January 17, 1986. Revised May 7, 1986.

This work is supported by Hallym University Grant, 1985.

by [4], the dual weight ϕ of τ is a dominant weight on M and $M_{\phi} = \pi_{\theta}(N) = N$ is a factor of type II_{∞}. Moreover by the relative commutant theorem we have $M_{\phi}' \cap M = \text{center of } M_{\phi} = CI$.

The following is due to Haagerup [7].

LEMMA 1. Let M be a factor of type III_1 with separable predual. Then the followings are equivalent.

- (1) For every faithful dominant weight ϕ on M and every x in M, $\frac{\overline{conv}\left\{uxu^* \mid u \in \mathcal{U}(M_{\phi})\right\} \cap C1 \neq \phi}{(the\ closure\ is\ \sigma\text{-weak}\ topology)}.$
- (2) For every normal faithful state ϕ on M, $B_{\phi} = C1$.
- (3) $\{\phi \mid \phi \text{ is a normal faithful state on } M, M_{\phi}' \cap M = C1\}$ is norm dense in M_* .

If M is injective then (1) (equivalently (2), (3)) holds.

Note that the following is shown in [8]. Let N be a factor with separable predual and M the crossed product of N by a discrete outer action. Then M has the Dixmier property relative to N: for all $x \in M$,

$$\overline{conv} \{uxu^* | u \in \mathcal{U}(N)\} \cap C1 \neq \phi.$$

But in the case of continuous crossed product, it is not known.

3. Bicentralizers of von Neumann algebras

PROPOSITION 1. The condition (1) of Lemma 1 is equivalent to (1'). (1'): There is a faithful dominant weight ϕ on M such that for every $x \in M$, $\overline{conv}\{uxu^* | u \in \mathcal{U}(M_{\psi})\} \cap C1 \neq \phi$.

Proof. Suppose that there is a faithful dominant weight ϕ such that (1') holds and let ϕ be an arbitrary faithful dominant weight. Then by [4], $\phi = \phi_v$ for some unitary v in M, where $\phi_v(x) = \phi(v^*xv)$ for $x \ge 0$. Note that

$$\mathcal{H}_{\psi_{\boldsymbol{v}}} = \{x \mid \psi_{\boldsymbol{v}}(x^*x) < \infty\}$$

$$= \{x \mid \psi(v^*x^*xv) < \infty\}$$

$$= \{x \mid xv \in \mathcal{H}_{\psi}\}$$

$$= \mathcal{H}_{\psi} \cdot v^*.$$

Also,
$$\mathcal{M}_{\phi_v} = (\mathcal{X}_{\phi} \cdot v^*)^* (\mathcal{X}_{\phi} \cdot v^*) = v \mathcal{M}_{\phi} v^*.$$

Hence, $M_{\phi_v} = \{y \mid \phi_v(yx) = \phi_v(xy), \text{ for all } x \in \mathcal{M}_{\phi_v}\}$

$$= \{ y | \psi(v^*yxv) = \psi(v^*xyv) \}$$

$$= \{ y | \psi(v^*yvz) = \psi(zv^*yv), \text{ for all } z \in \mathcal{M}_{\psi} \}$$

$$= \{ y | v^*yv \in M_{\psi} \} = vM_{\psi}v^*.$$

Therefore, $\overline{conv}\{uxu^*|u\in \mathcal{U}(M_{\phi_v})\}\cap C1\neq \phi$. This completes the proof.

PROPOSITION 2. The condition (3) of Lemma 1 is equivalent to (3'). (3'): There is a normal faithful state ϕ on M such that $M_{\phi}' \cap M = C1$.

Proof. Let ψ be a normal faithful state on M then by [3], there exists a unitary u in M such that $\|\phi - \phi_u\| < \varepsilon$ This entails the proof.

Let $\mathcal{S}_n(M)$ be the set of all normal states on M and let us put $M_{\phi}^{asympt} = \{(x_n) \in \mathcal{L}^{\infty}(N, M) \mid ||x_n\phi - \phi x_n|| \to 0 \text{ as } n \to \infty\}$ for every $\phi \in \mathcal{S}_n(M)$. Let $||x||_{\phi} = \phi(x^*x)^{1/2}$ for $x \in M$. It is known

$$B_{\phi} = \{ a \in M | \lim ||u_n a - a u_n|| = 0 \text{ for all } (u_n) \in \mathcal{U}(M_{\phi}^{asympt}) \}.$$

The author thanks Haagerup for pointing out the following fact.

PROPOSITION 3. There exists no type III_1 factor with separable predual such that M_{ϕ}^{asympt} consists only of trivial central sequences for all $\phi \in \mathcal{S}_n$ (M).

Proof. If ϕ is any normal faithful state on a factor of a type III₁, then by [3], there exists a state ϕ' arbitrary close to ϕ such that each of the centralizer M_{ϕ}' contains a copy of 2×2 matrices. This implies that for every $n\in N$, there exists a projection $p_n\in M$ such that

$$\|p_n\phi - \phi p_n\| \le 1/n \text{ and } |\phi(p_n) - 1/2| \le 1/n.$$

Clearly $(p_n) \in M_{\phi}^{asympt}$, but (p_n) is not a trivial central sequence because $\|p_n - \phi(p_n)\|_{\phi}^2 = \phi(p_n) - \phi(p_n)^2 \longrightarrow 1/4$ for $n \to \infty$

and because $\phi(p_n)1$ is the central element in M which is closest to p_n in $\|\cdot\|_{p}$ -norm. This completes the proof.

PROPOSITION 4. If the unitary group $\mathcal{U}(M_{\phi})$ of M_{ϕ} is amenable, then (1) holds.

Proof. Let m be an invariant mean on $\mathcal{U}(M_{\phi})$, then for every $x \in M$,

$$y = \int_{\mathcal{U}(M\phi)} uxu^*dm(u) \in M_{\phi}' \cap M = C1.$$

This completes the proof.

COROLLARY 5. If M_{ϕ} is generated by an amenable subgroup of $\mathcal{U}(M_{\phi})$, then (1) holds.

PROPOSITION 6. If M_{ψ} is injective, then (1) holds.

Proof. Since M_{ψ} is an injective Π_{∞} -factor, we can choose an increasing sequence of finite dimensional subfactor N_i of M_{ψ} such that $\bigcup_{i=1}^{\infty} N_i$ is dense in M_{ψ} . For $x \in M$, put $x_i = \int_{\mathcal{U}(N_i)} uxu^*d\mu_i$, where μ_i is the normalized Haar measure on $\mathcal{U}(N_i)$. Since $\{N_i\}$ is increasing, let $\lim x_i = x_{\infty}$ in the σ -weak topology. Then

$$x_{\infty} \in \bigcap_{i=1}^{\infty} (N_i' \cap M) = M_{\phi}' \cap M = C1.$$

By construction, $x_{\infty} \in \overline{conv} \{uxu^* | u \in \mathcal{U}(M_{\phi})\} \cap C1$. This completes the proof.

Let M be a von Neumann algebra acting on a separable Hilbert space H and denote \tilde{M} the von Neumann algebra $M \otimes M$ acting on $H \otimes H$ and by $\sigma_M \in \operatorname{Aut}(\tilde{M})$ the flip automorphism determined by $\sigma_M(a \otimes b) = b \otimes a$, $a, b \in M$.

DEFINITION. Let $A \subset B$ be von Neumann algebras and $\alpha \in Aut(A)$ an automorphism of A. We shall say that α is B-inner if there is a unitary $u \in B$ implementing α .

PROPOSITION 7. If the flip automorphism $\sigma_{M\phi} \in Aut(M_{\phi})$ is \widetilde{M} -inner, then the map $a \otimes b' \longrightarrow ab'$, $a \in M$, $b' \in M'$, extends to an isomorphism of $M_{\phi} \otimes M'$ onto $M_{\phi} \vee M'$, the von Neumann algebra generated by M_{ϕ} and M'.

Proof. Let $v \in \widetilde{M}$ be a unitary such that $\sigma_{M\phi}(a) = v^*av$, $v \in \widetilde{M}_{\psi}$. Define a map $\rho: M_{\psi} \bigvee M' \to v^*(M_{\phi} \otimes M')v$ by

$$\rho(t) = v^*(1 \otimes t)v, \ t \in M_{\phi} \backslash M'.$$

Then ρ is an isomorphism since it is a composition of amplication and spatial isomorphism. Now for every $a \in M_{\phi}$, $b' \in M'$ we have

$$\rho(ab') = v^* (1 \otimes ab') v = v^* (1 \otimes a) vv^* (1 \otimes b') v$$
$$= \sigma_{M\phi} (1 \otimes a) (1 \otimes b') = a \otimes b'.$$

Hence ρ^{-1} is the desired isomorphism. This completes the proof.

PROPOSITION 8. If $\sigma_{M\phi} \in Aut(\tilde{M}_{\phi})$ is \tilde{M} -inner, then there exists a type I factor F such that $M_{\phi} \subset F \subset M$.

Proof. By proposition 7, there is an isomorphism η from $M_{\psi} \vee M'$ onto $M_{\psi} \otimes M'$ such that $\eta(ab') = u \otimes b'$ for $a \in M_{\psi}$, $b \in M$. Since isomorphisms between type III-factors are always spatial, η is a spatial isomorphism. Let u be a unitary implementing η and let $F = u(B(H) \otimes 1)u^*$. Then $M_{\psi} \subset F \subset M$ and η is a type I factor. This completes the proof.

Proposition 9. If $\sigma_{M\phi} \in Aut(\tilde{M}_{\phi})$ is \tilde{M} -inner, then (1) holds.

Proof. By proposition 8, there exists a type I factor such that $M_{\psi} \subset F \subset M$. Since type I von Neumann algebras are injective by [6], F is injective.

Let $F = \bigcup_{i=1}^{\infty} N_i$ and for $x \in M$, let $y_i = \int_{\mathcal{U}(N_i) \cap M\psi} uxu^* d\mu(u)$, where μ is the normalized Haar measure on $\mathcal{U}(N_i) \cap M_{\psi}$. Put $y_{\infty} = \lim_{i \to \infty} y_i$. Then $y_{\infty} \in F' \cap N_i' \cap M \subset M_{\psi}' \cap M = C1$. By construction, $y_{\infty} \in \overline{conv} \{uxu^* | u \in \mathcal{U}(M_{\psi})\}$. This completes the proof.

References

- 1. A. Connes, Almost periodic states and factors of type III₁, J. Funct. Anal. **16**(1974), 415-445.
- 2. _____, Classification des facteurs, Operator Algebras and Applic., Proc. Symp. Pure Math. 38(1982), part II, 43-109.
- 3. A. Connes and E. Størmer, Homogeneity of the state space of factors of type III₁, J. Funct. Anal. 28(1978), 187-196.
- 4. A. Connes and M. Takesaki, The flow of weights on factors of type III, Tohoku Math. J. 29 (1977), 473-575.
- 5. C. D'antoni and R. Longo, Interpolation by Type I Factors and the Flip Automorphism, J. Funct. Anal 51(1983), 361-371.
- 6. E.G. Effros and E.C. Lance, Tensor product of operator algebras, Adv. Math. 25(1977), 1-34.
- 7. U. Haagerup, Connes' bicentralizer problem and uniqueness of the injective factor of type III₁, preprint 1984.
- 8. R. Longo, A rigidity theorem for infinite factors, preprint.
- 9. M. Takesaki, Structure of factors and automorphism of groups, CBMS Regional Conf. 51(1962).

Hallym University Chuncheon 200, Korea