ON STRONGLY STARLIKE FUNCTIONS OF ORDER α

M.M. Elhosh

1. Introduction

Let $S^*(\alpha)$ denote the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

that are analytic and satisfy the condition

$$|\arg zf'(z)/f(z)| \le \pi\alpha/2, \quad (0 \le \alpha \le 1), \tag{2}$$

in |z| < 1. Then f(z) is said to be strongly starlike of order α [3]. Functions in $S^*(\alpha)$ are univalent, since for each α , $0 \le \alpha \le 1$, $S^*(\alpha)$ is a subclass of the class of close-to-convex functions of order α ($0 \le \alpha \le 1$) and $S^*(1)$ is the ordinary class of starlike functions (see [3], [12]).

Let also f(z) be of the form (1) and satisfy

$$\log \frac{f(z)}{z} = 2\sum_{n=1}^{\infty} \gamma_n z^n \tag{3}$$

in |z| < 1. Then this is called the logarithmic expansion of f(z) in |z| < 1 and γ_n are the logarithmic coefficients (see for example [6], [7])

In this paper we shall use arguments of [2], [4] to obtain integral means for the logarithmic derivatives. Then we use these and the technique of [8] to obtain coefficient difference bounds.

2. The logarithmic derivatives

THEOREM 1. Let $f \in S^*(\alpha)$. Then for $z = re^{i\theta}(0 < r < 1)$, $0 \le \alpha \le 1$, $-\infty and <math>K(z) = z(1-z)^{-2}$ we have

$$\int_{-\pi}^{\pi} \left| r \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right|^{p} d\theta \leq \int_{-\pi}^{\pi} \left| r \frac{K'(re^{i\theta})}{K(re^{i\theta})} \right|^{p\alpha} d\theta.$$

In particular, if p=2 then

$$\int_{0}^{2\pi} \left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right|^{2} d\theta \leq \int_{0}^{2\pi} \left| \frac{1 + re^{i\theta}}{1 - re^{i\theta}} \right|^{2\alpha} d\theta$$

Received January 7, 1985.

$$=0 (1) \begin{cases} (1-r)^{1-2\alpha}, & (\alpha > 1/2), \\ log(1/(1-r)), & (\alpha = 1/2) \\ 1, & (0 \le \alpha < 1/2), \end{cases}$$

and this gives a partial answer to questions raised in [1, Problem 6.43] and [5, Problem 6.71].

Proof of Theorem 1. We see from [3], [12] that (2) can be written in the form

$$zf'(z)/f(z) = p(z)^{\alpha} \tag{4}$$

where $p(z) = 1 + p_1 z + ...$ such that Re p(z) > 0 in |z| < 1.

Now in view of [2], [4] we have

$$\left[\pm \log \left| \frac{re^{i\theta}f'(re^{i\theta})}{f(re^{i\theta})} \right| \right]^* \le \alpha \left[\log \left| \frac{1 + re^{i\theta}}{1 - re^{i\theta}} \right| \right]^*$$

$$= \alpha \left[\pm \log \left| \frac{re^{i\theta}K'(re^{i\theta})}{K(re^{i\theta})} \right| \right]^*$$
(5)

by (4).

This gives that

$$\int_{-\pi}^{\pi} \phi(\pm \log \left| \frac{rf'(re^{i\theta})}{f(re^{i\theta})} \right| d\theta \leq \int_{-\pi}^{\pi} \phi \left[\pm \log \left| \frac{rK'(re^{i\theta})}{K(re^{i\theta})} \right|^{\alpha} \right] d\theta.$$

Theorem 1 now follows by using the equation $\phi(u) = e^{\rho u}$.

REMARK 1. Using (5) and the argument of [2, p. 346] we see that

$$(\pm \log |f'(re^{i\theta})|)^* \le \left[\pm \log \frac{|1+re^{i\theta}|^{\alpha}}{|1-re^{i\theta}|^{\alpha+2}}\right]^*$$

which is Brown's result [4] when $0 \le \beta \le 1$ for our particular class.

THEOREM 2. Let $f \in S^*(\alpha)$ and that (3) holds; then for $n \ge 1$ we have $|\gamma_n| \le \alpha/n$.

The function $f(z) = [(1+z^n)/(1-z^n)]^{\alpha}$ shows that this bound is the best possible.

Proof. Let

$$zf'(z)/f(z) = p(z)^{\alpha} = 1 + \sum_{n=1}^{\infty} b_n(\alpha) z^n.$$

Then, from [12, p. 459] we have

$$|b_n(\alpha)| \leq 2\alpha \ (n \geq 1).$$

Using this and (3), (4), we easily see that

$$|\gamma_n| \le \alpha/n, \quad (0 \le \alpha \le 1, n \ge 1),$$
 (6)

as required.

From (6) one can also see that Milin's inequalities [1, p. 141] and [2, p. 335] for ourclass are

$$\sum_{k=1}^{n} k |\gamma_k|^2 \le \sum_{k=1}^{n} \alpha^2 / k, \tag{7}$$

$$\sum_{m=1}^{n} \sum_{k=1}^{m} k |\gamma_k|^2 \le \sum_{m=1}^{n} \sum_{k=1}^{m} \alpha^2 / k.$$
 (8)

3. Coefficient bounds

Applying Theorem 2, we deduce

THEOREM 3. Let $f \in S^*(\alpha)$ and $f(z) = z + \sum_{n=1}^{\infty} a_{nk+1} z^{nk+1}$ in |z| < 1.

Then we have for $k \ge 1$ that

$$|a_{nk+1}| \le {n-1+\alpha/k \choose n},$$

 $||a_{nk+1}| - |a_{(n-1),k+1}|| \le A(\alpha,k) n^{-1+1/k}.$

where $A(\alpha, k)$ is a constant depending on α, k .

Proof. The case $\alpha=1$ can be found in [8] and [11]. For $0<\alpha<1$ we have by Theorem 2 that $\log f(z)/z \langle (2\alpha/k)\log(1/(1-z^k))$ where, as in [9, p. 52], $\langle \langle \rangle$ means the coefficients on the left are dominated by the coefficients on the right of $\langle \langle \rangle$.

Now since exponentiation preserves majorization we have

$$f(z)/z\langle\langle (1-z^k)^{-2\alpha/k}\rangle$$

which gives the first inequality of Theorem 3.

Finally, applying the coefficients formula on

$$(z^{k}-z_{1}^{k})f'(z)=-z_{1}^{k}+\sum_{n=1}^{\infty}[(nk+1)a_{nk+1}-((n-1)k+1)a_{(n-1)k+1}]z^{nk}$$

and using Goluzin's inequality $|z^k-z_1^k||f(z)| \le A(k)(1-r^k)^{-1/k}$ and the fact that $\int_0^{2\pi} |p(re^{i\theta})|^{\alpha} d\theta \le A(\alpha, k)$ for $0 < \alpha < 1$, we deduce the second inequality (just as in [8]) of Theorem 3.

REMARK. Setting $\alpha=1$ and k=2 in the second inequality of Theorem 3 we deduce Milin's estimate [10] which gives a partial answer to the question raised in [1, prob. 6.37].

References

- 1. J.M. Anderson, K.F. Barth and D.A. Brannan, Research problems in complex analysis, Bull. London Math. Soc. 9(1977), 129-162.
- 2. A. Baernstein and J. Brown, Integral means of derivatives of monotone slit mappings, Comment. Math. Helvetici, 57(1982), 331-348.
- 3. D. Brannan and W. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. 2(1969), 431-443.
- 4. J. Brown, Derivatives of close-to-convex functions, integral means and bounded mean oscillation, Math. Z. 178(1981), 353-358.
- 5. J. Clunie and D. Brannan, Aspects of Contemporary Analysis, Academic Press (1980).
- 6. P. Duren, Successive coefficients of univalent functions, J. Lond. Math. Soc. 2(19) (1979), 448-450.
- 7. P. Duren and Y. Leung, Logarithmic coefficients of univalent functions, J. d'Analyse 36(1979), 36-43.
- 8. M. M. Elhosh, On successive coefficients of close-to-convex functions, Proc. Roy. Soc. Edinb. 96A(1984), 47-49.
- 9. E. Hille, Ordinary Differential Equations in the Complex Domain (John Wiley 1976).
- I. M. Milin, Adjacent coefficients of odd univalent functions, Siberian Math. J. (English version), 22(1981), 283-290.
- 11. Ch. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9(1962), 259-269.
- 12. M.O. Reade, The coefficients of close-to-convex functions. Duke Math. J. 23(1956), 459-462.

Department of Pure Mathematics The University College of Wales Aberystwyth Dyfed Wales UK