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ON STRONGLY STARLIKE FUNCTIONS OF ORDER «

M.M. ELHOSH

1. Introduction

Let §*(a) denote the class of functions

f (=) =2+ Dy (1)
that are analytic and satisfy the condition
larg 2f"(2)/f(2) | <7a/2, (0<a<1), (2)

in |2{<{1. Then f(z) is said to be strongly starlike of order « [3].

Functions in S*(a) are univalent, since for each a, 0<a<l, $*(a) is

a subclass of the class of close-to-convex functions of order a 0<a<l)

and §*(1) is the ordinary class of starlike functions (see [3], [12]).
Let also f(z) be of the form (1) and satisfy

log f-(f) _:_2217”2" (3)

in |z|<(1. Then this is called the logarithmic expansion of f(z) in |z|
<1 and 7, are the logarithmic coefficients (see for example [6], [7])

In this paper we shall use arguments of [2], [4] to obtain integral
means for the logarithmic derivatives. Then we use these and the tech.
nique of [8] to obtain coeflicient difference bounds.

2. The logarithmic derivatives

THEOREM 1. Let feS8*(a). Then for z=re’ (0<r< 1), 0<ga<l,
— oo (ploo and K(z)=2(1—z)% we have

‘T j‘/(reiﬁ) b - ‘] K’(reiﬂ) ba
l " 7l (10_«J | K (re) 0.
In particular, if p=2 then
2z J('/<rei9> 2 (2= 1+rei0 2a
Jo ’ f(re®) dﬂsjo 1—re* 40
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A—r)t-2, (a>1/2),
=0Mlog(1/(1—1)), (a=1/2)
1, 0<a<ll/2),
and this gives a partial answer to questions raised in {1, Problem 6.43]

and [5, Problem 6.71].
Proof of Theorem 1. We see from [3], [12] that (2) can be written

in the form
zf! () 1f(z) =p(2)® @
where p(z) =1+pyz+... such that Re p(2) >0 in |z{<1.
Now in view of [2], [4] we have
]*

) retf’ (re'?) T< [ 1+rei?
[J:log f(ret?) =al log 1—re*
retf K’ (ret?)
K (re'®)

Tk

(5)

:a[ilog

by (4).

This gives that
r rf’ (re'?) = rK’ (re'f) |=
" pCrtog| Ll lao< [ of log| e Jao.

Theorem 1 now follows by using the equation ¢(u) =e?*.

RemaRK 1. Using (5) and the argument of [2, p.346]we see that
Vi ro| o |1-+4reif)e :I*
(logl £/ o) *<| log TG
which is Brown’s result [4] when 0<8<1 for our particular class.

THEOREM 2. Let f€S8*(a) and that (3) holds; then for n>1 we have

Iral <a/n.
The function f(z) =[ (1+2z") /(1 —2")]1* shows that this bound is the best
possible.
Proof. Let

2f/ () /f (D) =p @ =1+ Lpa(@)e"
Then, from [12, p.459] we have
16, ()| <2a (n>1).

Using this and (3), (4), we easily see that
7.l <a/n, (0<a<l,n=1), (6)
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as required.

From (6) one can also see that Milin’s inequalities [1, p. 1417 and
[2, p.335] for ourclass are

Sklyil?< Sati, @)
k=1 kel

5 DklrelP<X Xat/k (8)
m=1 k=1 m=1 k=]

3. Coeflicient bounds

Applying Theorem 2, we deduce

THEOREM 3. Let feS*(a) and f(z):z+ia,,k+lz”k” in |z|<l.
n=1

Then we have for k=1 that
n—1 +a'//e>
I Ayki1 l < < 7

y
Hank+ll - |a(n"1)k+1[| <A (CZ, k) n_1+1/k9

where A(a, k) is a constant depending on a, k.

Proof. The case a=1 can be found in [8] and [11]. For 0<<e<1
we have by Theorem 2 that log f(z) /2{{(2a/k)log(1/ (1—2*))
where, as in [9, p.52], ({ means the coefficients on the left are dominated
by the coefficients on the right of (<.

Now since exponentiation preserves majorization we have
J(8) /21—ty

which gives the first inequality of Theorem 3.

Finally, applying the coefficients formula on

(st—2)f () =~ B (b Do — (1= Db+ Do Jo+
and using Goluzin’s inequality |zt—z#||f(2) | <A®) (1—r%)~1/# and the
fact thatlenlp(re“’)I“dﬁéA(a, k) for 0<<a<{l, we deduce the second
Inequality O(just as in [8]) of Theorem 3.

REMARK. Setting a=1 and 2=2 in the second inequality of Theorem

3 we deduce Milin’s estimate [10] which gives a partial answer to the
question raised in [1, prob. 6.37].
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