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REMARKS ON FINITE FIELDS III

SHINWON KANG

In [2] and [3], the Shinwon polynomial S,(z) of order n is defined
and studied in some details. In this paper we will define the general
Shinwon polynomial S, (a, z) and the Dickson polynomial D,(a,x) of
the second kind of order » which is a slightly changed form of the
Dickson polynomial g,(a, 2), and show that D,(q, ) is closely related
to S,(a, z).

Let @ and b be given integers. A sequence sy, s;,...of elements of Z
satisfying the relation

(D Spi2=aSy411-bs, for n=0,1, ...

is called a second order homogenecous linear recurring sequence in Z. With
this homogeneous linear recurring sequence we associate the 22 matrix

A over Z defined by A=[(1) ‘ﬂ The polynomial f{z) =det H xb_a-J-::vz

—az—b is called the characteristic polynomial of the sequence. The
vector (s,, s,41) is called the n—th state vector of the homogeneous linear
recurring sequence. The state vector (sy, s;) is also refered to as the initial

state vector. Since (5,:1, Sp42) = (Sp Spi1) [(1) ﬂ for all z=0, we have that

(Sns Sn41) = (50 51) A" for n=0, 1, ..., by induction on » ([4]).
LEMMA 1. If a and b are integers and A:[(l) 2J, then

o bsn—Z(d; b) b.&'n..l(a, b);’ .
4 _[sll“l (as b) Su (a, b) jU? 71-—2, vj) e

[nf2] 7, o+
where So(a,8) =1 and S,(a,b) =2 ("7 )ar2b for n=1,2, ...
120 1

Proof. We will prove the lemma by induction on .

42:1:0 b”‘z:[[) ba _A:[bsg(a, by bS(a, b)J
‘ 1 aJ a b+a®| | Si(a,b) Sy(a,b) |

Suppose that the lemma is true for all integers less than z. Then
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dre st A= [Fey(a D) Wrmala B0 4]

[bS,, 2(a, b) 62S,-3(a, b) +abS,-5(a, b)’]
Sp-1(a,8)  5S,-2(a, b) +aS,-(a, b)J'
According to the following identity

S.(a,b)=aS,-,(a, b) +5S,-5(a, b)
which follows from the property of the binomial coefficients:

(:n:r):<”—f—l)+(”7ifl>, [n/2]2r>1

7

we have that
Ar= i:b‘s *2(‘1’ b) bbn 1((1, b)}
n 1 (d, b) Sn (a: b)
So the lemma is true for all integers n>2.

THEOREM 1. If sy, s1... is a homogencous linear recurring sequence in
Z satisfying (1), then 5,=5bS,-3(a,b) +5,8,-1(a, b), for n=2.
Proof. By the above lemma, we have that
Gosee) = o) 57 500 52033 )
This means that
$p=8008—2(a, b) +5,8,-1(a, b), for nz=2.

DEFINITION. Let @ and & be any integers.

The sequence {s,} = {S,(a,8)} for n=0,1, 2, ...is called the Shinwon
sequence of the first kind with respect to a and b.

The sequence sg==2, s1=a, s, s=as,.1+bs, for n==0, 1, ...is called the
Shinwon sequence of the second kind with respect to a and b and is
denoted by {s,} ={D,(a,d)}.

On putting a=5b=1 in S,(a,b) and D,(a,b) respectively, we have
the interesting results: the sequence {S,(1,1)} = {F,.,} for n=0,1, ...is
the Fibonacci sequence and the sequence {D,(1,1)} = {L,} for n=0,1,

.» is the Lucas sequence. Since the sequence {D,{a, b)} is a homoge-
neous linear recurring sequence in Z satisfying (1), by the Theorem 1,
D, (a,b) is of the form

D,(a, b)=2bS,-2(a,b) +aS,-,(a,b), for n=2.

Simple calculation shows that for 22,
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[(n— ]
D,(a,b)=2b f}lz (” 22 )an—2~2ibi

i=0

[n—Bi23f, 1 __»
+a 32 (n zl Z>a"’1‘2‘b"

i=0

[nj2] .
=3, _l‘_T("TZ> an-2ip,
i=0 N—1 1

THEOREM 2. If « and § are the roots of the characteristic polynomial
flx)=a2—azx—b of the sequence {S,(a,b)} (or, equivalently {D,(a,b)}),
then

S.(a, b)) =ar+t-a*15+... a1+ 5"
D,(a, b)=a"4 "
Proof. We will prove the theorem by induction on .

SO (a, b) =1
Do (d, b) =2

Sl(a, b) =a=a+ﬁ

D](d, b) :(l——"a"i"ﬂ.

Suppose that the theorem is true for all integers less than #. Then

S,(a,b)=aS,-(a, b) +bS,-2(a, b)

= (a+p) (e 14+a®28+...+afr 2+ 51
__a,‘B (an—-z -+ an—3ﬁ+ . +((‘Bn»3 + [871—2)

=qr+ar 18+, Fafr 14 pm

D,(a,b)=aD,-(a,b) +bD,—3(a,b)
= (@) (@1 1) —af a2+ 170
=" + ﬁn_

So, the theorem is true for all integers.

LEMMA 2. For all integers n2r=2 we have that

Sn (d, b) :Sr'-l (d, b) Sn"r+1 (aa b) +bSr~2 ((l, {7) Sn—r (d, b)
Du (a’ b) :Sr"l (as b) Dn—H 1 (as b) +bSr~2(ar b) Dn“r (d, b) .

S0, Srria(e b))[b“f’iifl’bg’) 5, EEZ: 3 so

S (a: b) Sr 1(“1 b)Sn Hl(as b) +bSr Z(Q’ b)Sn r(a’ b)
(Dn(a, 8), Dyi1(a, 8)) = (2, a) A*= (2, a)z‘(l" r- Ar )
6S,—2(a,b) bS,-1(a, b
= (Daer(@,8), Dyria (o )| B ) 8- B |

r l(a’
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SO’ Dn (a: b) =Sr"1 (a’ b) Dn"r+1 (ds b) +bSr—2 (a’ b) Dn-r (d, b) .

LEMMA 3. For all positive integers n and r, we have that
Snr—l(a: b)EO (mOd Sr"l(aa b))*

Proof. Straightforward calculation shows that
Snr—l (a’ b) Zanr—l_}_anr——2‘3+”. +a‘8nr—2+‘5nr-l
= (" 1+a28+...+af2461) -
(a(n~l)r+a(n—2)r‘3r+ . +ar‘5(n~2)r+‘8(n—l)r)
:Sr—l (‘Za b)f(d, b)
where f(a, b) =a"-Drd-qn-Drgr 4qr»-2r 4 8G-Dr is a symmetric
polynomial in @ and 8 which means that f(a,5) is a polynomial in «
and 4.

LEMMA 4. For all positive integers n and r we have that
Dyerin (@, 8)=0 (mod D,(a,b)).

PrOOf. Dn(2r+1) ((Z, b) :an(2r+l) +‘Bn(2r+l)
— (an _|_ﬁn) (a2rn_a(2r—1)nlgn+ . __,an‘B(zr—])n_l_ﬁZrn)
:Dn(a’ b)g(a7 b)
where g(a,b) =a?m—q@-Dngny  _guger-Daygien o g symmetric
polynomial in @ and 8 which means that g(a,8) is a polynomial in «
and &.

LEMMA 5. Suppose that p is an odd prime and a and b are not divisible
by p. Then we have that
Sp-1(a, b):=:(a?+4b) 2~V /2 (mod p)
Dy(a, b)=a (mod p)

Proof. Sillce(P:1>: (p—1)--(p=r) ==(—1)"(mod p)

r!
we have that

Sp-1(a, b) =at~l4+at=284 ... - aft-24 pr-1
=art = (PT1) arspr ~(271) ape-zy e
= (@) P = [ (= )41
== (a®4-4b) ¢-P/2 (mod p).
Dy(a, b) =at-+pr=(a+f)?
=gb==q (mod p).
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LEMMA 6. Suppose that p is an odd prime and a and b are not divisible
by p. Then we have that
Sp(a, b)=alSp-1(a, b) +a?1](p-+1)/2
=[8Sy-2(a,8) —a?](p—1) (mod p).

Proof. 1t follows from the following properties:

o(#77)=(471) ot 1

r r
(P77} ==0(*777Y) (moa »)
where 1<r<(p—-1)/2.

LEMMA 7. For every positive integer n
SZn"l ((Z, b) :Sn—l(a: b) Dn ((1, b)’

Proof. Ss,—1(a,b) =8,-1(a, b) (a"+ ") =8,-1(a, b) D,(a, b).

LEMMA 8. For all positive integers n>2 and any non—zero integers a
and b, D,(a,b) does not contain the S, (a,b) as a factor for 1<r<n.

Proof. Suppose that D,(a,b)=S8,(a, b)f (a,b) where f(a,0)E2Z is a

polynomial in a and 4. Then
@+ pr=(ar+ a8+ . F a7 fa, B).

If we put a=p3=1, then we have that 2= (r-+1)/(a, b).
Since f(a,b)=Z, this is impossible.

If we replace & by an indeterminate x in S,(a, ) and D,(a, b) respecti-
vely, then we obtain the polynomials which are defined on Z, namely

i) /4 ..
S,,(a,x)zi;:)( ; ) @Y a1,

[ni2] ;

n n—i _o; 2

D,(a,z)=2 ———.—( : > a" ¥y n>1.
i=0 n—1 ¢

If we put e=1 in S,(a, z) then we have that
12— 5\ .
S, L) =3 ("7 )ei =8,

where §,(x) is the Shinwon polynomial of order » (see [2] and [3]).
If we put a=2 and b=—¢ in D,(a,b) then we obtain the another

polynomial
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Dﬂ(x! _C)=§O n'—k
where g,(z,c) is the Dickson polynomial ([4]).

[n/2] .
(7 F) (ot =gy o)

DEFINITION. For any non-zero integer @ and positive integer z, S,(a, x)
is called the general Shinwon polynomial of order n. D,(a,z) is called
the Dickson polynomial of the second kind of order n.

By the preceding theorems and lemmas we obtain many interesting
identities.

S, (a, ) =aS,-1(a, ) +28,-2(a, x) n=2

D,(a, ) =aS,-1(a, x) +228,-5(a, x) n=>2
S,(a, ) =8,(a, ) S,-.(a, ) +28,-1(a, ) Sp—,-1(a, ) n>r>1
Dn (a’ .’L‘) :Sr—l(a’ .’L‘) Dn‘r-i—l (a’ .’L’) '|'.TS,-—2 <a3 .’L‘) Dn—r ((Z, T) n>r>2

Swrin-1(a, £)=0 (mod S,(a, z))

Dn(2r+l) (a’ .’II) =( (mOd Dn (d, .’L‘))
Sp-1(a, x)=(a?+42)»~V/2 (mod p) p : odd prime

Dy(a, x)==a (mod p)
S,(a, x)=al[8s-1(a, z) +a?~1](p+1)/2

=[2S,-5(a, z) —a?](p—1) (mod p) p:odd prime

SZn—l (ds x) = Sn—l (d, .’L‘) D, (LZ, .’E)
Sp(a, x) :S(p—n/z(a, -T)D(p+1)/2(ay x) p :odd prime

For every odd prime p, the polynomial S,(z) splits over the finite field
F, and has distinct (p—1)/2 roots in F, (see [2]).

THEOREM 3. Let a be a non—zero fized element in F, where p is an
odd prime. Then the polynomial Sp(a, x) splits over F, and has distinct
(p—1)/2 roots in F,.

Proof. By the Lemma 5 and 6, we have in F,

Sp(a, x) =al (a®+42) @D/ 2+at~1 ] (p+1) /2.
But for all z&F, we have that (a®-+42)#»~P/2=1 or —1 or 0 and
a?~1=1. If z runs over F, so also does y=a?+4x. There are exactly
(p—1)/2 distinct elements in F,, namely y,=a®+4x;, y2=a?+4x,, ...,
Yop-n 2= 4T -1 /2 such that y;"P/2=—1for /=1,2,...(p—1)/2.
This means that xy, ..., ¥, /2 are roots of S,(a,x). Since the degree
of 8y(a,x) is (p~1)/2, the theorem is evident.

COROLLARY. For every odd prime p and positive integer n, the poly-
nomial 8,p+»-1(a, x) over Fy has at least (p—1)/2 solutions in F,.
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Proof. Since the polynomial S,(a, x) has distinct (p—1)/2 roots in
F, and
Sacpin-1(a, z)=0 (mod S, (a, z))

the corollary is valid.

LEMMA 9. For every odd prime p, the polynomial x%-ax—b is irreducible
over F, if and only if S,(a,b)=0.

Proof. By the Lemma 6, we have in F, that S,(a,b)=a[ (a®+45)
@~D/72417(p+1)/2. A root of z2—ax—b is a=(a+ va2+4p)/2. If
a2?—ax—b is irreducible over F,, then 4?-+4& is a non-quadratic residue
mod p and (a®+4b)®~V/2=—1 in F, This means that S,(a, ) =0.
Conversely, assume that S,(a,8) =0. Then we have (a?+45)#-V/2=
—1 and a belongs to the splitting field of 22—ax—&. So 2?—az—b is
irreducible over F,.

LEMMA 10. Let f(z)=z2—ax—b be irreducible over F,. Then the
order of f(x) is equal to the order of the matrix A=[g Z:l in the general

linear group GL(2, F,) and divides p*-1.

Proof. We will denote the order of f(z) by |f|. Suppose that |f]|
=r and ¢ is an element in the splitting field of f which satisfies 22—aa
—b=0. Then 2=at+b and straightforward calculation shows that #=
[aS,-1(a,b) ]t +bS,-5(a,b). Since =1, this means that S,-,(a, b)=0

and bS,-,(a, b)=1, so by the Lemma 1 we have that A= [(1) (1)] If f

is irreducible over F,, then S,(a,4)=0. So we have that ##*1=5S,,
(a,8) = —b. This means that ##*~!=1 and |f|]|($2—1).

In [2] T had proved that if f(z) =22—x—a is irreducible over F,, p
is a prime, and S(f) (Shinwon number or subperiod of f)=p+1, then
g=x?*!'—x—a is irreducible over F,.

S.D. Cohen [1] has showed the more general result: if f (x)=£}a,-x"
i=0
is an irreducible polynomial over F, with subperiod M, then the degree
of every irreducible factor of f*(x) =Xa;x@V/e71 is M.
i=0

By these, we have the following fact. If f=a?—ax—b is irreducible
over F, and S(f)=p+1, then g=a?*'—ax—b is also irreducible over
F,.
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LEMMA 11. Let a be a non—zero fized element of F p Lf the irreducible
polynomial f(x)=22—ax—b over F, has S(f)=r, then S,-i(a,b)=0
and | f|=r-Ord (bS,-2(a, b)) where Ord(bS,-5(a, b)) is the order of
bS,-2(a, b) in the multiplicative group F,.

Proof. Since S(f)=r, there exists some d& F, such that f(z) divides
a2"—d. Let ¢ be an element which satisfies the polynomial f=22—ax—b,
then 2=at-+b and #'=d. So, t'=[aS,-1(a, b)]t+5bS, 5(a, d) =d means
that S,-;(a, 8) =0 and S, ,(a, b) =d. Since "=d, we have that | f |=r-
Ord(d).

LEMMA 12. Let p be an odd prime such that p=2n—1 for some n.
If the polynomial f=2a2—ax—0b is irreducible over F, and has S(f)=
p+1, then D,(a,b)=0.

Proof. By the Lemma 7 we have that
Sp (@, 8) =S3,-1(a, b) =8,-1 (a,8) D, (a, b).
Suppose that the polynomial f=2%-az—5 is irreducible over F, Then
S,(a,6)=8,-1(a,0)D,(a,5)=0. If S,;(a,b)=0 then S(f)=n. But
this contradicts to S(f)=p+1=2x. Hence D,(a, d)=0.

THEOREM 4. Let a be a non—zero fixed element of F, and p an odd
prime such that p=2n—1 for some n. Then there exists an element b in
F, such that the polynomial f(x)=a%—ax—b over F, has S(f)=p+1.

Proof. Since the polynomial S,(a, 2) splits over F, and S,(q, z)=
S,-1(a, ) D,(a, x), the polynomial D,(a, z) splits over F,. By the
Lemma 8 D,(a, ) has not any S,(a,x) as a factor. If D,(a,z) does
not contain any polynomial D,(a, z) for »>2 as a factor, then for every
root & of D,(x,a) in F, we have that S(f)=p+1 where f=22—az—b.
If D,(a,z) contains the factors D, (a, z), ..., D, (a,z), then D,(a, x)
is of the form D,(a, x) =h(a, ) D, (a, z)---D, (a, ) where deg h(a, z) >1.
Since % (a, x) splits over F,, h(a,z) has a root & in F, and for the
polynomial f=22—ax—b6 we have that S(f)=p+1.
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