REMARKS ON FINITE FIELDS III

SHINWON KANG

In [2] and [3], the Shinwon polynomial $S_n(x)$ of order n is defined and studied in some details. In this paper we will define the general Shinwon polynomial $S_n(a, x)$ and the Dickson polynomial $D_n(a, x)$ of the second kind of order n which is a slightly changed form of the Dickson polynomial $g_n(a, x)$, and show that $D_n(a, x)$ is closely related to $S_n(a, x)$.

Let a and b be given integers. A sequence $s_0, s_1, ...$ of elements of Z satisfying the relation

(1)
$$s_{n+2} = as_{n+1} + bs_n \text{ for } n = 0, 1, ...$$

is called a second order homogeneous linear recurring sequence in Z. With this homogeneous linear recurring sequence we associate the 2×2 matrix A over Z defined by $A = \begin{bmatrix} 0 & b \\ 1 & a \end{bmatrix}$. The polynomial $f(x) = \det \begin{bmatrix} x & b \\ 1 & x-a \end{bmatrix} = x^2 - ax - b$ is called the characteristic polynomial of the sequence. The vector (s_n, s_{n+1}) is called the n-th state vector of the homogeneous linear recurring sequence. The state vector (s_0, s_1) is also referred to as the initial state vector. Since $(s_{n+1}, s_{n+2}) = (s_n, s_{n+1}) \begin{bmatrix} 0 & b \\ 1 & a \end{bmatrix}$ for all $n \ge 0$, we have that $(s_n, s_{n+1}) = (s_0, s_1) A^n$ for $n = 0, 1, \ldots$, by induction on n ([4]).

LEMMA 1. If a and b are integers and $A = \begin{bmatrix} 0 & b \\ 1 & a \end{bmatrix}$, then

$$A^{n} = \begin{bmatrix} bs_{n-2}(a,b) & bs_{n-1}(a,b) \\ s_{n-1}(a,b) & s_{n}(a,b) \end{bmatrix} for \ n=2,3,...$$

where $S_0(a,b) = 1$ and $S_n(a,b) = \sum_{i=0}^{\lfloor n/2 \rfloor} {n-i \choose i} a^{n-2i} b^i$ for n = 1, 2, ...

Proof. We will prove the lemma by induction on n.

$$A^{2} = \begin{bmatrix} 0 & b \\ 1 & a \end{bmatrix}^{2} = \begin{bmatrix} b & ba \\ a & b+a^{2} \end{bmatrix} = \begin{bmatrix} bs_{0}(a,b) & bS_{1}(a,b) \\ S_{1}(a,b) & S_{2}(a,b) \end{bmatrix}.$$

Suppose that the lemma is true for all integers less than n. Then

Received November 20, 1985.

$$A^{n} = A^{n-1} \cdot A = \begin{bmatrix} bS_{n-3}(a,b) & bS_{n-2}(a,b) \\ S_{n-2}(a,b) & S_{n-1}(a,b) \end{bmatrix} \begin{bmatrix} 0 & b \\ 1 & a \end{bmatrix}$$
$$= \begin{bmatrix} bS_{n-2}(a,b) & b^{2}S_{n-3}(a,b) + abS_{n-2}(a,b) \\ S_{n-1}(a,b) & bS_{n-2}(a,b) + aS_{n-1}(a,b) \end{bmatrix}.$$

According to the following identity

$$S_n(a, b) = aS_{n-1}(a, b) + bS_{n-2}(a, b)$$

which follows from the property of the binomial coefficients:

$$\binom{n-r}{r} = \binom{n-r-1}{r} + \binom{n-r-1}{r-1}, \quad \lceil n/2 \rceil \geqslant r \geqslant 1$$

we have that

$$A^{n} = \begin{bmatrix} bS_{n-2}(a,b) & bS_{n-1}(a,b) \\ S_{n-1}(a,b) & S_{n}(a,b) \end{bmatrix}.$$

So the lemma is true for all integers $n \ge 2$.

THEOREM 1. If $s_0, s_1...$ is a homogeneous linear recurring sequence in \mathbb{Z} satisfying (1), then $s_n = s_0 b S_{n-2}(a, b) + s_1 S_{n-1}(a, b)$, for $n \ge 2$.

Proof. By the above lemma, we have that

$$(s_n, s_{n+1}) = (s_0, s_1) \begin{bmatrix} bS_{n-2}(a, b) & bS_{n-1}(a, b) \\ S_{n-1}(a, b) & S_n(a, b) \end{bmatrix}.$$

This means that

$$s_n = s_0 b S_{n-2}(a, b) + s_1 S_{n-1}(a, b)$$
, for $n \ge 2$.

DEFINITION. Let a and b be any integers.

The sequence $\{s_n\} = \{S_n(a,b)\}$ for n=0,1,2,... is called the Shinwon sequence of the first kind with respect to a and b.

The sequence $s_0=2$, $s_1=a$, $s_{n+2}=as_{n+1}+bs_n$ for n=0, 1, ... is called the Shinwon sequence of the second kind with respect to a and b and is denoted by $\{s_n\} = \{D_n(a,b)\}$.

On putting a=b=1 in $S_n(a,b)$ and $D_n(a,b)$ respectively, we have the interesting results: the sequence $\{S_n(1,1)\} = \{F_{n+1}\}$ for n=0,1,... is the Fibonacci sequence and the sequence $\{D_n(1,1)\} = \{L_n\}$ for n=0,1,..., is the Lucas sequence. Since the sequence $\{D_n(a,b)\}$ is a homogeneous linear recurring sequence in \mathbb{Z} satisfying (1), by the Theorem 1, $D_n(a,b)$ is of the form

$$D_n(a, b) = 2bS_{n-2}(a, b) + aS_{n-1}(a, b)$$
, for $n \ge 2$.

Simple calculation shows that for $n \ge 2$,

$$\begin{split} D_n(a,b) = & 2b \sum_{i=0}^{\left \lceil (n-2)/2 \right \rceil} \binom{n-2-i}{i} a^{n-2-2i} b^i \\ &+ a \sum_{i=0}^{\left \lceil (n-1)/2 \right \rceil} \binom{n-1-i}{i} a^{n-1-2i} b^i \\ = & \sum_{i=0}^{\left \lceil n/2 \right \rceil} \frac{n}{n-i} \binom{n-i}{i} \ a^{n-2i} b^i. \end{split}$$

THEOREM 2. If α and β are the roots of the characteristic polynomial $f(x) = x^2 - ax - b$ of the sequence $\{S_n(a,b)\}$ (or, equivalently $\{D_n(a,b)\}$), then

$$S_n(a,b) = \alpha^n + \alpha^{n-1}\beta + \dots + \alpha\beta^{n-1} + \beta^n$$
$$D_n(a,b) = \alpha^n + \beta^n.$$

Proof. We will prove the theorem by induction on n.

$$S_0(a, b) = 1$$

 $D_0(a, b) = 2$
 $S_1(a, b) = a = \alpha + \beta$
 $D_1(a, b) = a = \alpha + \beta$.

Suppose that the theorem is true for all integers less than n. Then

$$\begin{split} S_n(a,b) &= aS_{n-1}(a,b) + bS_{n-2}(a,b) \\ &= (\alpha+\beta) \left(\alpha^{n-1} + \alpha^{n-2}\beta + \dots + \alpha\beta^{n-2} + \beta^{n-1}\right) \\ &- \alpha\beta \left(\alpha^{n-2} + \alpha^{n-3}\beta + \dots + \alpha\beta^{n-3} + \beta^{n-2}\right) \\ &= \alpha^n + \alpha^{n-1}\beta + \dots + \alpha\beta^{n-1} + \beta^n. \\ D_n(a,b) &= aD_{n-1}(a,b) + bD_{n-2}(a,b) \\ &= (\alpha+\beta) \left(\alpha^{n-1} + \beta^{n-1}\right) - \alpha\beta \left(\alpha^{n-2} + \beta^{n-2}\right) \\ &= \alpha^n + \beta^n. \end{split}$$

So, the theorem is true for all integers.

LEMMA 2. For all integers $n \ge r \ge 2$ we have that

$$S_n(a,b) = S_{r-1}(a,b) S_{n-r+1}(a,b) + b S_{r-2}(a,b) S_{n-r}(a,b) D_n(a,b) = S_{r-1}(a,b) D_{n-r+1}(a,b) + b S_{r-2}(a,b) D_{n-r}(a,b).$$

$$Proof. \quad (S_{n}(a,b),S_{n+1}(a,b)) = (1,a)A^{n} = (1,a)A^{n-r} \cdot A^{r}$$

$$= (S_{n-r}(a,b),S_{n-r+1}(a,b)) \begin{bmatrix} bS_{r-2}(a,b) & bS_{r-1}(a,b) \\ S_{r-1}(a,b) & S_{r}(a,b) \end{bmatrix}. \text{ So,}$$

$$S_{n}(a,b) = S_{r-1}(a,b)S_{n-r+1}(a,b) + bS_{r-2}(a,b)S_{n-r}(a,b)$$

$$(D_{n}(a,b),D_{n+1}(a,b)) = (2,a)A^{n} = (2,a)A^{n-r} \cdot A^{r}$$

$$= (D_{n-r}(a,b),D_{n-r+1}(a,b)) \begin{bmatrix} bS_{r-2}(a,b) & bS_{r-1}(a,b) \\ S_{r-1}(a,b) & S_{r}(a,b) \end{bmatrix}.$$

So,
$$D_n(a,b) = S_{r-1}(a,b) D_{n-r+1}(a,b) + bS_{r-2}(a,b) D_{n-r}(a,b)$$
.

LEMMA 3. For all positive integers n and r, we have that $S_{nr-1}(a,b) \equiv 0 \pmod{S_{r-1}(a,b)}$.

Proof. Straightforward calculation shows that

$$S_{nr-1}(a,b) = \alpha^{nr-1} + \alpha^{nr-2}\beta + \dots + \alpha\beta^{nr-2} + \beta^{nr-1}$$

$$= (\alpha^{r-1} + \alpha^{r-2}\beta + \dots + \alpha\beta^{r-2} + \beta^{r-1}) \cdot (\alpha^{(n-1)r} + \alpha^{(n-2)r}\beta^r + \dots + \alpha^r\beta^{(n-2)r} + \beta^{(n-1)r})$$

$$= S_{r-1}(a,b)f(a,b)$$

where $f(a, b) = \alpha^{(n-1)r} + \alpha^{(n-2)r}\beta^r + ... + \alpha^r\beta^{(n-2)r} + \beta^{(n-1)r}$ is a symmetric polynomial in α and β which means that f(a, b) is a polynomial in α and β .

LEMMA 4. For all positive integers n and r we have that $D_{n(2r+1)}(a,b) \equiv 0 \pmod{D_n(a,b)}$.

Proof.
$$D_{n(2r+1)}(a, b) = \alpha^{n(2r+1)} + \beta^{n(2r+1)}$$

= $(\alpha^n + \beta^n) (\alpha^{2rn} - \alpha^{(2r-1)n}\beta^n + \dots - \alpha^n\beta^{(2r-1)n} + \beta^{2rn})$
= $D_n(a, b) g(a, b)$

where $g(a, b) = \alpha^{2rn} - \alpha^{(2r-1)n}\beta^n + ... - \alpha^n\beta^{(2r-1)n} + \beta^{2rn}$ is a symmetric polynomial in α and β which means that g(a, b) is a polynomial in a and b.

LEMMA 5. Suppose that p is an odd prime and a and b are not divisible by p. Then we have that

$$S_{p-1}(a,b) = (a^2+4b)^{(p-1)/2} (mod \ p)$$

$$D_p(a,b) = a \ (mod \ p)$$

Proof. Since
$$\binom{p-1}{r} = \frac{(p-1)\cdots(p-r)}{r!} \equiv (-1)^r \pmod{p}$$

we have that

$$\begin{split} S_{p-1}(a,b) &= \alpha^{p-1} + \alpha^{p-2}\beta + \ldots + \alpha\beta^{p-2} + \beta^{p-1} \\ &= \alpha^{p-1} - \binom{p-1}{1} \alpha^{p-2}\beta + \ldots - \binom{p-1}{p-2} \alpha\beta^{p-2} + \beta^{p-1} \\ &= (\alpha - \beta)^{p-1} = \left[(\alpha - \beta)^2 \right]^{(p-1)/2} \\ &= (a^2 + 4b)^{(p-1)/2} \pmod{p}. \\ D_p(a,b) &= \alpha^p + \beta^p = (\alpha + \beta)^p \\ &= a^p = a \pmod{p}. \end{split}$$

LEMMA 6. Suppose that p is an odd prime and a and b are not divisible by p. Then we have that

$$S_{p}(a,b) \equiv a[S_{p-1}(a,b) + a^{p-1}](p+1)/2$$

= $[bS_{p-2}(a,b) - a^{p}](p-1) \pmod{p}$.

Proof. It follows from the following properties:

$$2\binom{p-r}{r} \equiv \binom{p-r-1}{r} \pmod{p}$$
$$\binom{p-r}{r} \equiv (p-1)\binom{p-r-1}{r-1} \pmod{p}$$

where $1 \le r \le (p-1)/2$.

LEMMA 7. For every positive integer n

$$S_{2n-1}(a,b) = S_{n-1}(a,b) D_n(a,b).$$

Proof.
$$S_{2n-1}(a,b) = S_{n-1}(a,b) (\alpha^n + \beta^n) = S_{n-1}(a,b) D_n(a,b)$$
.

LEMMA 8. For all positive integers $n \ge 2$ and any non-zero integers a and b, $D_n(a,b)$ does not contain the $S_r(a,b)$ as a factor for $1 \le r \le n$.

Proof. Suppose that $D_n(a,b) = S_r(a,b) f(a,b)$ where $f(a,b) \in \mathbb{Z}$ is a polynomial in a and b. Then

$$\alpha^n + \beta^n = (\alpha^r + \alpha^{r-1}\beta + \dots + \alpha\beta^{r-1} + \beta^r)f(a, b).$$

If we put $\alpha = \beta = 1$, then we have that 2 = (r+1)f(a, b). Since $f(a, b) \in \mathbb{Z}$, this is impossible.

If we replace b by an indeterminate x in $S_n(a, b)$ and $D_n(a, b)$ respectively, then we obtain the polynomials which are defined on \mathbb{Z} , namely

$$\begin{split} S_n(a,x) &= \sum_{i=0}^{\lceil n/2 \rceil} \binom{n-i}{i} \ a^{n-2i} x^i \quad n \geqslant 1. \\ D_n(a,x) &= \sum_{i=0}^{\lceil n/2 \rceil} \frac{n}{n-i} \binom{n-i}{i} \ a^{n-2i} x^i \quad n \geqslant 1. \end{split}$$

If we put a=1 in $S_n(a,x)$ then we have that

$$S_n(1, x) = \sum_{i=0}^{\lceil n/2 \rceil} {n-i \choose i} x^i = S_n(x)$$

where $S_n(x)$ is the Shinwon polynomial of order n (see [2] and [3]). If we put a=x and b=-c in $D_n(a,b)$ then we obtain the another polynomial

$$D_n(x, -c) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n}{n-k} \binom{n-k}{k} (-c)^k x^{n-2k} = g_n(x, c)$$

where $g_n(x,c)$ is the Dickson polynomial ([4]).

DEFINITION. For any non-zero integer a and positive integer n, $S_n(a, x)$ is called the general Shinwon polynomial of order n. $D_n(a, x)$ is called the Dickson polynomial of the second kind of order n.

By the preceding theorems and lemmas we obtain many interesting identities.

$$S_{n}(a, x) = aS_{n-1}(a, x) + xS_{n-2}(a, x) \quad n \geqslant 2$$

$$D_{n}(a, x) = aS_{n-1}(a, x) + 2xS_{n-2}(a, x) \quad n \geqslant 2$$

$$S_{n}(a, x) = S_{r}(a, x)S_{n-r}(a, x) + xS_{r-1}(a, x)S_{n-r-1}(a, x) \quad n > r \geqslant 1$$

$$D_{n}(a, x) = S_{r-1}(a, x)D_{n-r+1}(a, x) + xS_{r-2}(a, x)D_{n-r}(a, x) \quad n > r \geqslant 2$$

$$S_{n(r+1)-1}(a, x) \equiv 0 \quad (mod \quad S_{r}(a, x))$$

$$D_{n(2r+1)}(a, x) \equiv 0 \quad (mod \quad D_{n}(a, x))$$

$$S_{p-1}(a, x) \equiv (a^{2} + 4x)^{(p-1)/2} \quad (mod \quad p) \quad p : \text{odd prime}$$

$$D_{p}(a, x) \equiv a \quad (mod \quad p)$$

$$S_{p}(a, x) \equiv a[S_{p-1}(a, x) + a^{p-1}](p+1)/2$$

$$\equiv [xS_{p-2}(a, x) - a^{p}](p-1) \quad (mod \quad p) \quad p : \text{odd prime}$$

$$S_{2n-1}(a, x) = S_{n-1}(a, x)D_{n}(a, x)$$

$$S_{p}(a, x) = S_{(p-1)/2}(a, x)D_{(p+1)/2}(a, x) \quad p : \text{odd prime}$$

For every odd prime p, the polynomial $S_p(x)$ splits over the finite field F_p and has distinct (p-1)/2 roots in F_p (see [2]).

THEOREM 3. Let a be a non-zero fixed element in F_p where p is an odd prime. Then the polynomial $S_p(a, x)$ splits over F_p and has distinct (p-1)/2 roots in F_p .

Proof. By the Lemma 5 and 6, we have in F_p

$$S_{p}(a, x) = a[(a^{2}+4x)^{(p-1)/2}+a^{p-1}](p+1)/2.$$

But for all $x \in F_p$ we have that $(a^2 + 4x)^{(p-1)/2} = 1$ or -1 or 0 and $a^{p-1} = 1$. If x runs over F_p so also does $y = a^2 + 4x$. There are exactly (p-1)/2 distinct elements in F_p , namely $y_1 = a^2 + 4x_1$, $y_2 = a^2 + 4x_2$, ..., $y_{(p-1)/2} = a^2 + 4x_{(p-1)/2}$, such that $y_i^{(p-1)/2} = -1$ for i = 1, 2, ... (p-1)/2. This means that $x_1, ..., x_{(p-1)/2}$ are roots of $S_p(a, x)$. Since the degree of $S_p(a, x)$ is (p-1)/2, the theorem is evident.

COROLLARY. For every odd prime p and positive integer n, the polynomial $S_{n(p+1)-1}(a,x)$ over F_p has at least (p-1)/2 solutions in F_p .

Proof. Since the polynomial $S_p(a, x)$ has distinct (p-1)/2 roots in F_p and

$$S_{n(p+1)-1}(a, x) \equiv 0 \pmod{S_p(a, x)}$$

the corollary is valid.

LEMMA 9. For every odd prime p, the polynomial x^2 -ax-b is irreducible over F_p if and only if $S_p(a,b) = 0$.

Proof. By the Lemma 6, we have in F_p that $S_p(a,b) = a \left[(a^2 + 4b) (p-1)/2 + 1 \right] (p+1)/2$. A root of $x^2 - ax - b$ is $\alpha = (a + \sqrt{a^2 + 4b})/2$. If $x^2 - ax - b$ is irreducible over F_p , then $a^2 + 4b$ is a non-quadratic residue $mod\ p$ and $(a^2 + 4b)^{(p-1)/2} = -1$ in F_p . This means that $S_p(a,b) = 0$. Conversely, assume that $S_p(a,b) = 0$. Then we have $(a^2 + 4b)^{(p-1)/2} = -1$ and α belongs to the splitting field of $x^2 - ax - b$. So $x^2 - ax - b$ is irreducible over F_p .

LEMMA 10. Let $f(x) = x^2 - ax - b$ be irreducible over F_p . Then the order of f(x) is equal to the order of the matrix $A = \begin{bmatrix} 0 & b \\ 1 & a \end{bmatrix}$ in the general linear group $GL(2, F_p)$ and divides $p^2 - 1$.

Proof. We will denote the order of f(x) by |f|. Suppose that |f| = r and t is an element in the splitting field of f which satisfies $x^2 - ax - b = 0$. Then $t^2 = at + b$ and straightforward calculation shows that $t^r = \left[aS_{r-1}(a,b)\right]t + bS_{r-2}(a,b)$. Since $t^r = 1$, this means that $S_{r-1}(a,b) = 0$ and $bS_{r-2}(a,b) = 1$, so by the Lemma 1 we have that $A^r = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. If f is irreducible over F_p , then $S_p(a,b) = 0$. So we have that $t^{p+1} = bS_{p-1}(a,b) = -b$. This means that $t^{p^2-1} = 1$ and $|f| \mid (p^2-1)$.

In [2] I had proved that if $f(x) = x^2 - x - a$ is irreducible over F_p , p is a prime, and S(f) (Shinwon number or subperiod of f) = p+1, then $g = x^{p+1} - x - a$ is irreducible over F_p .

S. D. Cohen [1] has showed the more general result: if $f(x) = \sum_{i=0}^{m} a_i x^i$ is an irreducible polynomial over F_q with subperiod M, then the degree of every irreducible factor of $f^*(x) = \sum_{i=0}^{m} a_i x^{(q^{i-1})/q-1}$ is M.

By these, we have the following fact. If $f=x^2-ax-b$ is irreducible over F_p and S(f)=p+1, then $g=x^{p+1}-ax-b$ is also irreducible over F_p .

LEMMA 11. Let a be a non-zero fixed element of F_p . If the irreducible polynomial $f(x) = x^2 - ax - b$ over F_p has S(f) = r, then $S_{r-1}(a,b) = 0$ and $|f| = r \cdot Ord(bS_{r-2}(a,b))$ where $Ord(bS_{r-2}(a,b))$ is the order of $bS_{r-2}(a,b)$ in the multiplicative group F_p .

Proof. Since S(f) = r, there exists some $d \in F_p$ such that f(x) divides $x^r - d$. Let t be an element which satisfies the polynomial $f = x^2 - ax - b$, then $t^2 = at + b$ and $t^r = d$. So, $t^r = [aS_{r-1}(a, b)]t + bS_{r-2}(a, b) = d$ means that $S_{r-1}(a, b) = 0$ and $bS_{r-2}(a, b) = d$. Since $t^r = d$, we have that |f| = r. Ord(d).

LEMMA 12. Let p be an odd prime such that p=2n-1 for some n. If the polynomial $f=x^2-ax-b$ is irreducible over F_p and has S(f)=p+1, then $D_n(a,b)=0$.

Proof. By the Lemma 7 we have that

$$S_p(a,b) = S_{2n-1}(a,b) = S_{n-1}(a,b) D_n(a,b).$$

Suppose that the polynomial $f=x^2-ax-b$ is irreducible over F_p . Then $S_p(a,b)=S_{n-1}(a,b)D_n(a,b)=0$. If $S_{n-1}(a,b)=0$ then S(f)=n. But this contradicts to S(f)=p+1=2n. Hence $D_n(a,b)=0$.

THEOREM 4. Let a be a non-zero fixed element of F_p and p an odd prime such that p=2n-1 for some n. Then there exists an element p in F_p such that the polynomial $p(x)=x^2-ax-b$ over p has p(x)=p+1.

Proof. Since the polynomial $S_p(a, x)$ splits over F_p and $S_p(a, x) = S_{n-1}(a, x)D_n(a, x)$, the polynomial $D_n(a, x)$ splits over F_p . By the Lemma 8 $D_n(a, x)$ has not any $S_r(a, x)$ as a factor. If $D_n(a, x)$ does not contain any polynomial $D_r(a, x)$ for $r \ge 2$ as a factor, then for every root b of $D_n(x, a)$ in F_p we have that S(f) = p+1 where $f = x^2 - ax - b$. If $D_n(a, x)$ contains the factors $D_{r_1}(a, x), \ldots, D_{r_i}(a, x)$, then $D_n(a, x)$ is of the form $D_n(a, x) = h(a, x)D_{r_i}(a, x)\cdots D_{r_i}(a, x)$ where $\deg h(a, x) \ge 1$. Since h(a, x) splits over F_p , h(a, x) has a root b in F_p and for the polynomial $f = x^2 - ax - b$ we have that S(f) = p+1.

References

- 1. S.D. Cohen, Reducibility of sub-linear polynomials over a finite field, Bull. Korean Math. Soc. 22(1985) 53-56.
- S.W. Kang, Remarks on finite fields, Bull. Korean Math. Soc. 20(1983), 81-85.
- 3. S.W. Kang, Remarks on finite fields II, Bull. Korean Math. Soc. 22(1985) 37-41.
- 4. R. Lidl and H. Niederreiter, Finte fields, Cambridge University Press, 1984.

Hanyang University Seoul 133, Korea