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ON THE LINE SEARCH METHOD USING
MUTUALLY ORTHONORMAL DIRECTIONS

CrANG Wook KM

1. Introduction

Unconstrained optimization deals with the problem of
minimizing a function in the absence of any constraints.

The well-known techniques solving unconstrained minimi-
zation problems are the simplex method ({21), the pattern
search method ([4]), the gradient method ([81), the New-
ton’s method ([17) and the conjugate gradient method (T32).
Several unconstrained optimization techniques can be extended
in a natural way to provide and motivate solution procedures
for constrained problems ([67, [7]).

In this paper, we are concerned with the line search method
using mutually orthonormal directions and the cyclic coordi-
nate method. We give algorithms about two techniques and
establish the covergence theorem for the more general algori-
thms which cover two algorithms,

2. The line search method using mutually orthonormal
directions

This method uses the mutually orthonormal vectors in R*
as the search directions. At k-th iteration, suppose that we
have a point x* and a set of mutually orthonormal directions

di, -, dFf. We obtain 2%*! by minimizing f sequentially

"

along the directions d,*%, --+,d,*. Suppose that x’?‘1=x”+}_:1
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ArdE. We generate the new collection of mutually orthono-
rmal directions d**%, .-, d,*'! in R* by the Gram-Schmidt
orthogonalization process ([5]) as follows;
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We summarize below the line search method using orthon-
ormal directions for minimizing a function f:R*—R as
foilows.

Initialization step: Let ¢2>0 be the termination scalar, Choose
di', -+, d,' as the coordinate directions, where d,! isa vector
of zeros except for a one at the 7-th position. Choose a star-
ting point z!, let y,'=2x!, %2=j=1 and po to the main step.

Ma:in step: 1. Let A* be an optimal solution to the problem
to minimize f(y}*+xd,}) subject to AER, and let 3%, =
yr+atdE If f<n, replace 7 by 741, and repeat step L.
Otherwise, go to step 2.

2. Let a*1=yt ; If [{z*1— 2*|| <e, then step. Otherwise,
let y**1=X*1 replace £ by k+1 let j=1 and go to step 3.

3. Form a new set of mutually orthonormal search direct-
ions by (1-1). Repeat step 1.

3. The eyclic coordinate method

This method uses the coordinate axes as the search direc-

tions. More specially, the method searches eyclically along
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the directions d, - d, in R* where d, is a vector of zeros
except for a one at the j-th position. Thus, along the search
direction d, the j-th variable x, is changed while all other
variables are kept fixed.

We summarize below the cyclic coordinate method for mi-
nimizing a function /:R*>R as follows.

Initialization step: Choose a scalar >0 to be used for
terminating the algarithm and let d; --- d, be the coordinate
directions. Choose an initial point xt, let 3 =2z, let k=j=1,
and go to the main step.

Main step: 1. Let A,* be an optimal solution to the pro-
blem to minimize f(y,*+Ad,}*) subject to NER, and let ¥*.
=y +7r d} M j<n, replace jby j+1, and repeat step L.
Otherwise, if j=n, go to step 2.

2. Let atl=y* , If {|2*1—x*| <e, then stop. Otherwise,
let y,**'=x"i, let =1, replace £ by £+1, and repeat step L.

4. The convergence theorem

We produce a more general algorithm which covers the line
search method using mutually orthonormal directions and
the cyclic coodinate method as follows: At %4-th iteration,
suppose that we have a point x* and a set of directions d*,
-+, df in R, where [Id,f|[=1 for each j and that |det D¥|>3§
for some >0, where D=(d*, ---, d,)

We determine a new point 2*'! and a new set of directions
as follows minimizing a function f:R*—R strating from
x* sequentially in the directions d*, -, d, produces x*t
=xt+ D\ where M=(\% -+, A,*) 1s a vector indicating the
distance moved in each direction, that is,
=z (3-1)
Via=y S ENE i=1, -, (3-2)
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=yt (3-3)
S A A dR) < f(y.2+ad ) for all AER,
for i=1,---n. (3-4)
Now D**1 obtained as a function of the triple (A% D,*x*) by
some specified rule such that ||d,**!||=1 for each j and
[detD**1]| > 8.

The following Lemma is needed to prove the convergence
theorem for the above scheme which covers the line search
method using mutually orthonormal directions and the cyclic
coordinate method,.

LEmMa. Let f:R*—>R be continuous and r*&R, Let
{d*} be a sequence of directions such that ||d*||=1 for each
k. Starting from z\, let (x*} be a sequence obtained by
minimizing f from x*\ in the direction d* to obtain x*.
If {x*} is contained in a compact set X and if f has a
unique minimum on any line, then {|x*'— x>0 as k—oo.
Proor., For each x&X and d with ||d||=1, let s{x,d) be a
number such that f[x+s(x, d)d]<f(x+rd) for allx,

Then for >0, let

h(e)=inf{f(x)—flzx+s(x, d)d]s(x, d)=e, =X, {dl|=1}
By contradiction, suppose that A(¢)=0 for some <>0. By
the definition of infimum and the compactness of X, we
can find an infinite sequence K of positive integers so that
for 2K, x*—x, dt—d, st=s(a* d*)—-s=>e and such that
flaxty—F(x*+ std¥)—0. Since flat+stdt) < f(x*+rd?) for each
A, then f(Z)=f(Z+sd)<f(Z+Ad) for each \. This contra-
dicts the assumption that f bas a unique minimum on any

line, Thus A(£)>0 for each ¢>0.

Since {z'} is contained in a compact set X and f is con-
tinuous, then the sequence {f(x#)}is bounded below. Since
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the sequence {f{x*)} is decreasing, the sequence {f(z*)} has
a limit, Hence, for each ¢>0, only finitely many step sizes

[lz#*t —x*|| are greater than ¢. Thus, ||x**! —2*||{—>0Qas &—
0o,

THEOREM. Let fiR*—R be continuously differentiable and
suppose that it has a unique minimum along any line.
Starting with x', suppose that the above algorithm prod-
uces the sequence (x*}, Furthermore, suppose that all
points generated by the algorithm are contained in a co-
mpact set. Then each accumulation point % of the sequence
{x*Y must satisfy pf(%)=0.

Proor. Let {y,*} and {A,*} be the sequences generated
according to {3-1) through (3-4). By the lemma, A -0 far

each 7, as k—cc,

Now let ¥ be an accumulation point of {z*}, so that 2*—%
as k—»co, in some unbounded set K. By (3-1) and {3-2),

y;k:x"ﬂli A*d*, and hence vy —% as k—ooin K. Since pf
) ; Vi

is continuous, for each ¢>0 there is a N so that [{gf(y.®)
~pflx)|| <e for >N, k=K.
From (3-4). f(y *)'d*=0
Thus, for each k>N, (k=K.
wf(zya = ||ipf(2) —pf(y.H) 1 d | +Hrf(y, ) d H
|Iwf(Z) —f .U 1A
=g f(x) -7y
<&
Therefore, f(%)'D*—-0 as 2—oo in K. Since each column of
D* has norm 1, there exists an n X n matrix D such that
D*~D as k—coin K’, where K’ is an unbounded subset of

K. Since |det D*#|>8, then|det D|>8 Hence, columns of D
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are linearly independent. Thus pf(Z)=0.
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