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SOME REMARKS ON THE DISC ALGEBRA

Tai Sung Song

1. Introduction

Let 乙8=£8(t)denote the space of essentially bounded 
measurable complex-valued functions with respect to the 
normalized Lebesque measure (1/2r) d6 defined on the unit 
circle T in the complex plane. With the usual operations 
and the norm

||glL=ess sup|g(o")|,
乙°。is a commutative Banach algebra. We denote by C=C(T) 
the commutative Banach algebra of continuous complex-val
ued functions on T.

We denote by H® and A the Banach algebras of functions 
in L°° and C, respectively, whose Fourier coefficients corr
esponding to the negative integers vanish.

For a complex-valued Lebesgue integrable function f on T, 
let f(W) denote the harmonic extension of f into the unit 
disc D by means of Poissons formula, that is,

fE"&- 匚:術PWt.

For a commutative Banach algebra B with identity, we let 
M(B) denote the set of complex homomorphisms of B.
is called the maximal ideal space or spectrum of B. It is 
well known[4, p. 137] that M(B) is a compact Hausdorff 
space with respect to the weak star topology, and \\m\\—m
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(1) = 고 for each complex homomorphism m in M(B),
In this paper, we investigate some properties of the disc 

algebra A9 and consider the condition that the functional on 
A of evaluation at the origin has a unique Hahn-Banach 
extension to a closed subalgebra of containing A.

2. Main results

Let 5 be a commutative Banach algeb호a with identity. 
Writing

we have a homomorphism f---->f from B into the
algebra of continuous complex-valued functions on
This homomorphism is called the Gelfand transform. We 
note that the Gelfand transform is norm decreasing：

H/ll=sup I

Definition 2.1. The Banach algebra B is called a uniform 
algebra if the Gelfand transform is an isometry, that is, if

1IZII-II/IL f&B.
It is well known [6, p. 270] that the Gelfand transform is 

an isometry if and only if \\f2\\ = \\f\\2 for all feB.
Example 2. 2. Let fsL". Then \ f2\ = \f\ \f\^\\f\\^ alm

ost everywhere, and |/|= V\\f^\\Z almost every
where*^ hence \\/2\\^~\\/\\^ and so LT is a uniform al
gebra.

Suppose B is any algebra of continuous complex-valued 
functioii등 on a compact Hausd。호ff space Y. If B has the 
uniform norm and if B is complete, then B is a uniform 
algebra. If B contains the constant functions and separates 
the points of Y, we say that B is a uniform algebraon Y.

When .8 is a uniform algebra, the range ■含 of 난比 Gelfand
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transform is a uniformly closed subalgebra of and
芭 is isometrically isomorphic to B. In that case we identify 
f with f and write

ff) = f 3), fsB, meM(B).
Clearly, B = ^ separates the points of A4(B) and contains 
the constant functions on M(B). Thus, any uniform algebra 
3 is a uniform algebra on its maximal ideal space M(B).

Definition 2.3. The uniform algebra B on a compact 
Hausdorff space Y is said to a Dirichlet algebra if Re B 
={Re f: feB} is uniformly dense in CR( Y), the algebra 
of real-valued continuous functions on Y.

Proposition 2.4. The disc algebra A is a Dirichlet alge
bra.

Proof. It is clear that A is a uniform algebra on T. If f 
is a function in C^(T), every Cesaro mean for f is a real- 
valued trigometric polynomial:

b“(z)= S (1
闵 

n )야e"',

1 广兀

Clearly, <ra(zr) e Re A. Since {cr„} converges uniformly to 
力 it follows that Re A is dense in Cr(T).

Proof.
Then we

_  co
Proposition 2.5. The algebra U z~nA is dense in C. n=l

Let P be the set of all trigonometric polynomials, 
have

Since P

FcU『0uC.M=1
is a self-adjoint subalgebra of C which contains

the constant functions and separates points, it follows from 
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the Stone-Weier^trass theorem that the uniform closu고e of
8

P is C, Hence C is the uniform closure of \Jz~nA. n=\
Proposition 2.6. There exists a closed subalgebra of L00 

which contains A, is not contained in HM9 and does not 
contain C.

Proof. Let A? be a closed nowhere dense subset of T of 
positive Lebesgue measure, and let B be the closed subalge
bra of 乙8 generated by A and Clearly, XKeB. Suppose 
%对//8. Since K is a set of positive measure, it follows that 
1卩成卩8=1・ Let g be the analytic extension of into D. 
Since XK = 0 on T—K, it follows that g(2)三0 in D. (See 
[3, p.76] or [5, p. 266])；hence

l=ll% 시 |8=llgll°°=0.
This is a contradiction. Hence, and so B is not
contained in

To prove that B does not contain C, we note that B is 
the norm closure of the set {^xg+h：g, heA}. Since T—K is 
dense in T, it follows that

(2.1) HZ^+A-^IL^ess sup{|(奴g)(e") + M")-e-“|:

e fsT-K}
= ess sup{卩z(e”) —：。"如、一・K}
二二 sup{|/z(e") — 厂”]

Without loss of generality, we may assume that 五(0)球0. 
Then

(2.2) 估—藉 아P-& PXO-t} [五(次)一『勺也

=4土니从(시 ((匡厂〈1).
1 —r
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1 一仇(0)1 
1+IA(O)|Choose r such that <1. Then, by(2.1) and

(2. 2), 11lKg +h — I w1. Hence and so C is notz
contained in B.

If y is a Banach space and Ko is a subspace of Y, the 
Hahn^Banach theorem asserts that any bounded linear func
tional mQ on Yq has a bounded linear extension m to Y 
satisfying \\m\\ = \\m0\\. If there is only one such m. then 

is said to have a unique Hahn-Banach extension. A bo
unded linear functional m on a Banach algebra B is said to 
be positive if Re m(/)^0 for every f in B with Re f^O. 
We note that if ??z is a linear functional on a subalgebra of 
L" an너 —1, .then m is positive. (See [1, p. 81j).

The。교em 2.7. Let B be a closed subalgebra of L°° con
taining the disc algebra A, and let mQ be the bounded 
linear functional on A defined by m°(g) = g(0). Then 
has a unique Hahn-Banach extension to B if and only if

(2. 3) sup{Re m0(g)：g£?l, Re g^Re f}
-inf{Re 初°(g)：g&4, Re g^Re f}

for all fsB.
Proof. Suppose that m0 has a unique Hahn-Banach extens- 

ion to B* To establish (2.3), consider the positive linear 
functional on Re A defined by

Re g---- > Re m°(g).
By the p호。。f of the Hahn-Banach 반leorem, this functional 
has a positive extension whose value at Re f is any number 
in the interval where

a尸sup{Re m0(g)-\\Re g-Re
6/=inf{Re m^g^ + WRe g-Re f\\：geA}.

Since Re(g^\\Re g-Re f^Re(g+\\Re g-Re ///), 
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it follows that
冬Wsup{R。mMg)：g&A, Re g^Re f) 
冬inf{」Re m()(g)：g£ A, Re gWRe

So when the Hahn-Banach extension is unique, we must have 
equality in (2. 3).

Conversely, suppose that (2. 3) holds for all f&B. Suppose 
th환t and m2 are Hahn-Banach extensions of mQ to B.
Since |"시|=%)(1) = 1, it follows that HmJI =mx(l) = l and 
11I = 1) = 1: hence and m2 are positive. Assume that
/for some member f of B. Without loss of 

generality, we may assume that Re m^f) <.Re m2(y). Put 
Yf=sup{Re m^gy.geA, Re g^Re f}, 
8f=inf{Re 〃跖(g)：g&l, Re g^Re f}.

If g is a member of A and Re gWRe £ 바len Re(須一g)NO.
Since i동 positive, Re m^f^^Re ~Rem0(g)] hence

(2.4) Re ”心如

Suppose that g is a member of A and Re g^Re f. Since m2 
is positive, it follows that

Re m()(g) = Re m2(g)^Re m2(f)； 
lienee

(2.5) 8f^Re m2(f\
By (2.4) and (2. 5), we have 3/> 7y. This contradicts the 
hypothesis that Sy = 7/ for all f in B.

For a commutative Banach algebra with identity, there is 
a one-to-one correspondence m<—>M between a complex 
homomorphism m of the algebra onto the algebra of complex 
numbers and a maximal ideal M in the algebra. The corres
pondence 治 defined by M=ker(m') [2, p. 92]. Since every 
maximal ideal in a Banach algebra B is the kernel of a 
complex homomorphism m：B——>C, it follows that is
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nowhere zero on if and only if where B~l is
the set of all invertible elements of B.

Theorem 2.8. Let B be a closed subalgebra of L ° cont
aining the disc algebra A. Assume that the linear funct
ional mo(/)=/(O) has a unique Hahn-Banach extension 
from A to B. Then either B二)C or BuHL

Proof. Suppose that B does not contain C. Then B doet 
not contain the functio효 z~l because, by proposition 2. 5, the 
uniformly closed algebra generated by z~l and A is C. The
refore the ideal zB in B consisting of all functions zf with

in B is proper. Consequently, there exists a complex ho
momorphism m oi B such that zBdker(m). Since
^zB for all it follows 반聽Lt m is a Hahn-Banach 
extensixmrof We note that

■느「六尹)日。=六0) for every f in A\ 
F

・ • ・ Ihence the integration with respect to -况朋 defines a Hahn- 

Banach exfen앙ion of m0. Since mQ has a unique Hahn-Banach 
extension to B, it follows that

m(Q=房「f(e»翌 
zm 丿-兀

for every f in B. If f is any funtion in B and n is any 
positive integer, then the function znf is in zB and so is 
annihilated by that is,

药匚収(e，M=0.

This says that the algebra B is contained in the algebra
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