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SOME REMARKS ON THE DISC ALGEBRA

TAl SUNG SoNnG

1. Introduction

Let L==L=(T) denote the space of essentially bounded
measurable complex-valued functions with respect to the
normalized Lebesque measure (1/27) d@ defined on the unit
circle T in the complex plane. With the usual operations

and the norm

[lgll.=ess suplg(e)l,
L* is a commutative Banach algebra. We denote by C=C(T)

the commutative Banach algebra of continuous complex-val-
ued functions on 7.

We denote by H™ and A the Banach algebras of functions
in L” and C, respectively, whose Fourier coefficients corr-
esponding to the negative integers vanish.

For a complex-valued Lebesgue integrable function f on T,
let f(re’) denote the harmonic extension of f into the unit

disc D by means of Poisson’s formula, that is,
13y = 1 §
flre?y=5— [ fOP(O-t)de.

For a commutative Banach algebra B with identity, we let
M(B) denote the set of complex homomorphisms of B. M(B)
is called the maximal ideal space or spectrum of B. It is
well knownl4, p.137] that M(B) is a compact Hausdorff

space with respect to the weak star topology, and ||m|i=m
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(1)=1 for each complex homomorphism 7 in M(B).

In this paper, we investigate some properties of the disc
algebra A, and consider the condition that the functional on
A of evaluation at the origin has a unique Hahn-Banach
extension to a closed subalgebra of L™ containing A.

2. Main results

Let B be a commutative Banach algebra with identity.
Writing
Fmy=m(f), feB, meM(B),
we have a homomorphism f—— 7 from B into C(34(B)), the
algebra of continuous complex-valued functions on J3f(B).
This homomorphism is called the Gelfand transform. We
note that the Gelfand transiorm is norm decreasing:

A 1l=sup | 7 ()| IS]].
m= (B

DEFINITION 2.1. The Banach algebra B is called a uniform
algebra if the Gelfand transform is an isometry, that is, if

HA=1If1l, feB.

It is well known (6, p.270] that the Gelfand transform is
an isometry if and only if 1| f2||={|f[|? for all feB.

ExaMrLE 2.2. Let feL”. Then| f2=|fI| 112l fli% alm-
ost everywhere, and |f|= |2 < V[ fH]. almost every-
where; hence 1| f2l|..=||f112, and so L is a uniform al-
gebra.

Suppose B is any algebra of continunous complex-valued
functions on a compact Hausdorff space Y. If B has the
uniform norm and if B is complete, then B is a uniform
algebra. If B contains the constant functions and separates
the points of Y, we say that B is a uniform algebraon Y.

When B is a uniform algebra, the range B of the Gelfand
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transform is a uniformly closed subalgebra of C(M(B)), and
B is isometrically isomorphic to B. In that case we identify
S with f and write
Fm)y=m(f)=5(m), feB, meM(B).

Clearly, B=8 separates the points of }M(B) and contains
the constant functions on M(B). Thus, any uniform algebra
B is a uniform algebra on its maximal ideal space M(B).

DEFINITION 2.3. The uniform algebra B on a compact
Hausdorff space Y is said to a Dirichlet algebra if Re B
={Re f: feB} is uniformly dense in Cu(Y), the algebra
of real-valued continuous functions on Y.

PROPOSITION 2.4. The disc algebra A is a Dirichlet cige-
bra.

Proor. It is clear that A is a uniform algebra on 7. If f
is a function in Cr(T), every Cesaro mean for f is a real-
valued trigometric polynomial:

ol@)= 8 (1= e

Cr=5_- i_' F()etdt=z¢,

Clearly, o*(x) ¢ Re A. Since {o,} converges uniformly to
S, it follows that Re A is dense in Cg(T).

PROPOSITION 2. 5. The algebra D z"*A is dense in C.
n=1

Proor. Let P be the set of 2ll trigonometric polynomials,
Then we have

Pc CJ z*ACC.
#=1

Since P is a self-adjoint subalgebra of C which contains

the constant functions and separates points, it follows from
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the Stone-Weierstrass theorem that the uniform closure of

P is C. Hence C is the uniform closure of Gz'”A.

n=1

PRrRoPoSITION 2.6, There exists a closed subalgebra of L~
which contains A, is not contained in H®, and does not
contain C.

ProOF. Let K be a closed nowhere dense subset of T of
positive Lebesgue measure, and let B he the closed subaige-
bra of L™ generated by A and Xy, Clearly, XxeB. Suppose
xxeH”*. Since K is a set of positive measure, it follows that
HXxlle=1. Let g be the analytic extension of Iy into D,
Since Xx=0 on T°—K, it follows that g(2)=01in D. (See
{3,p.76] or [5,p.2661);hence

I=[xxl{«=1lgl].=0.
This is a contradiction. Hence, 1xEH", and so B is not
contained in H™.

To prove that B does not contain C, we note that B is
the norm closure of the set {Xxg+h:g heA}. Since T—K is
dense in 7T, it follows that

(2.1) [txg-+h—-1-l.zess sup(|(txg)(e) +hle)—e™|:
e'eT—-K}
=ess sup{|h(e?)—et|:eteT — K}
=sup{|h{e*) —e | 1eeT},
Without loss of generality, we may assume that A(0)70.
Then

(2.2) ”k—%“mgs?p[ L (" Pg-1) [h(eﬂ)ue-'fzdz[

(27

_ 147
=g |2(0)] (0=r<1).
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1 —-1A(0)]

ChODSe 7 SUCh that iji—

Zr<1. Then, by(2.1) and

(2.2), EiXKgnLh—"i—liw%l. Hence z7'¢£B, and so C is not

contained in 5.

If ¥ is a Banach space and Y, is a subspace of Y, the
Hahn-Banach theorem asserts that any bounded linear func-
tional 7, on Y, has a bounded linear extension m to Y
satisfying ||m|{={imel[. If there is only one such z, then
my is said to have a unique Hahn-Banach extension. A bo-
unded linear functional 7 on a Banach algebra B is said to
be positive if Re m(f)=0 for every f in B with Re f=0.
We note that if 7 is a linear functional on a subalgebra of
L~ amd ||m|l=m(1)=1, .then m is positive. (See {1, p.8L1).

Tueorem 2.7. Let B be a closed subalgebra of L™ con-
taiming the disc algebra A, and let my be the bounded
linear functional on A defined by my(g)=g(0). Then m,
has a unique Hahn-Banach extension to B if and only if

(2.3) sup{Re my(g):gcA, Re g<Re f}

=inf{Re my(g):geA, Re g=Re f}
for all feB.

PRroOF. Suppose that m, has a unique Hahn-Banach extens-
ion to B, To establish (2.3), consider the positive linear
functional on Re A defined by

Re g — Re my(g).
By the proof of the Hahn-Banach theorem, this functional
has a positive extension whose value at Re f is any number
in the interval (oty, 51, where
as=sup{Re my,(g)—{|Re g—Re f||:geA},
By=inf{Re my(g)+||Re g—Re fl|:geAl.
Since Re(g—||Re g—Re f||)<Re f<Re(g+||Re g—Re fi}),
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it follows that
o;Zsup{Re my(g):geA, Re g<Re f}
<inf{Re my(g):ge A, Re g=Re f}<8;.
So when the Hahn-Banach extension is unique, we must have
equality in (2. 3).

Conversely, suppose that (2.3) holds for all feB. Suppose
that m; and m; are Hahn-Banach extensions of m, to B,
Since {{mel|=me(1)=1, it follows that ||m,)l=m,(1)=1 and
o)l =m,(1) =1 hence m, and m, are positive. Assume that
m (f Y£m f) for some member f of B. Without loss of
generality, we may assume that Re m;(f)<Re m,(f). Put

Y;=sup{Re my(g):gcA, Re g<Re f},

S;=inf{Re my(g):geA, Re g=Re f}.
If g is a member of A and Re g=<Re f, then Re(f—g)=0.
Since m; is positive, Re m,(f)=Re m(g)=Remy(g); hence

(2.4) Re my(f)=",.

Suppose that g is a member of A and Re g=Re f. Since m,
is positive, it follows that

Re my(g)=Re m,(g)=Re m,(f);
hence

(2.5) 3:2Re my(f).

By (2.4) and (2.5), we have §>%,;, This contradicts the
hypothesis that 6,=7; for all f in B.

For a commutative Banach algebra with identity, there is
a one-to-one correspondence m<«-—M between a complex
homomorphism  of the algebra onto the algebra of complex
numbers and a maximal ideal M in the algebra. The corres-
pondence is defined by M=rker(m) [2, p.92]. Since every
maximal ideal in a Banach algebra B is the kernel of a

complex homomorphism m:B~——C, it follows that 7(m) is
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nowhere zero on M(B) if and only if feB™Y, where B! is
the set of all invertible elements of B.

TurorReM 2.8. Let B be a closed subalgebra of L~ cont-
aining the disc aigebra A. Assume that the linear funct-
ional my( f Y=f(0) has a unique Hahn-Banach extension
from A to B. Then either BOC or BCH ',

Proor. Suppose that B does not contain C. Then B doet
not contain the function z7! because, by proposition 2.5, the
uniform!y closed algebra generated by 27! and A is C. The-
refore the ideal 2B in B consisting of all functions =zf with
f in B is proper. Consequently, there exists a complex ho-
momorphism 7 of B such that 2BCker(m). Since f(z)—f(0)
ezB for all feA, it follows that m is is a Hahn-Banach
extension—of 7y, We note that

_'2%,' g- Jle*)df=£(0) for every fin A;

-7

hence the integration with respect to —l—dé’ defines 2 Hahn-

2
Banach extension of =y, Since m, has a unigue Hahn-Banach
extension to B, it follows that

m(fy=—e |7 flen)as

for every f in B. If fis any funtion in B and n is any
positive integer, then the function 2*f 1is in 2B and so is
annihilated by 7, that is,

L (7 e f(e*)dg =0,

27 -

This says that the algebra B is contained in the algebra H .
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