PUSAN KYÖNGNAM MATHEMATICAL JOURNAL

Vol. 2, 33-44, 1986

SOME PROPERTIES OF BITOPOLOGICAL SPACES

WON HUH AND YONG MUN PARK

1. Introduction

A bitopological space (X, P, Q) is a set X together with two topologies P and Q on X. In this paper we study some properties of bitopological spaces.

In J. C. Kelly[2], Theorem 2.7. is the generalization of Urysohn's Lemma. In this paper we prove the sufficiency condition also holds.

In section 3, when we define a bitopological space (X, P, Q) to be pairwise paracompact if (X, P, Q) is pairwise Hausdorff and each P-open covering of X has a Q-open nbd-finite refinement, and each Q-open covering of X has a P-open nbd-finite refinement, we prove that every pairwise paracompact space is pairwise normal.

2. Pairwise Hausdorff, pairwise regular, pairwise normal bitopological spaces

The following definition extends to a bitopological space (X, P, Q) the notions of separation properties of a topological space (X, F).

DEFINITION 2.1.[2]. In a space (X, P, Q), P is said to be regular with respect to Q if, for each point x in X, there is a P-neighbourhood base of Q-closed sets.

THEOREM 2.2. In a space (X, P, Q), P is regular with respect to Q if and only if, for each point x in X and each P-closed set P such that $x \in P$, there are a P-open set U and a Q-open set V such that $x \in U$, $F \subseteq V$, and $U \cap V = \phi$.

PROOF. Let x be an arbitrary point in X, and P is a P-closed set such that $x \in P$. Then $x \in P^c$ and P^c is a P-open set. By hypothesis, there exists a P-neighbourhood of Q closed set U of x such that $U \subseteq P^c$. Then, $x \in U$, $P \subseteq U^c$, U is a P-open set, U^c is a Q-open set, and $U \cap U^c = \phi$, i.e. there exist a P-open set U and a Q-open set U^c such that $x \in U$, $P \subseteq U^c$, and $U \cap U^c = \phi$. Conversely, let x be an arbitrary point in X and N(x) be a P-open neighbourhood base of x. Then for each element W of N(x), W^c is P-closed and $x \in W^c$

By hypothesis, there exist a *P*-open set *U* and a *Q*-open set *V* such that $x \in U$, $W^c \subseteq V$ and $U \cap V = \phi$. Then there are a *P*-open set *U* and *Q*-closed set V^c such that $x \in U \subset V^c$ $\subset W$.

Put $W(x) = \{V^c\}$, then W(x) is a *P*-neighbourhood base of *Q*-closed sets.

(X, P, Q) is or P and Q are, pairwise regular if P is regular with respect to Q and vice versa.

DEFINITION 2.3. [2]. A space (X, P, Q) is said to be pairwise Hausdorff if for each two distinct points x and y, there are a P-neihbourhood U of x and a Q-neighbourhood V of y such $U \cap V = \phi$.

THEROEM 2.4. [5]. If a bitopological space (X, P, Q) is pairwise Hausdorff then sets which are compact with respect to one are closed with respect to the other.

DEFINITION 2.5. [2]. A space (X, P, Q) is said to be pairwise normal if, given a P-closed set A and a Q-closed set B with $A \cap B = \phi$, there exist a Q-open set U and a P-open set V such that $A \subseteq U$, $B \subseteq V$, and $U \cap V = \phi$.

THEOREM 2.6. A space(X, P, Q) is pairwise normal if and only if, given a Q-closed set C and a P-open set D such that $C\subseteq D$, there are a P-open set G and a Q-closed set F such that $C\subseteq G\subseteq F\subseteq D$.

PROOF. Let C be a Q-closed set and D be a P-open set such that $C \subseteq D$. Then D^c is a P-closed set and $C \cap D^c = \phi$. By hypothesis there exists a Q-open set U and a P-open set V such that $D^c \subseteq U$, $C \subseteq V$, and $U \cap V = \phi$.

Then $U^{c}\subseteq D$, $C\subseteq V$, $V\subseteq U^{c}$, and U^{c} is a Q-closed set. Put $F=U^{c}$, and G=V, then there exist a P-open set G and a Q-closed set F such that $C\subseteq G\subseteq F\subseteq D$.

Conversely, let A be a P-closed set and B be a Q-closed set such that $A \cap B = \phi$. Then A^c is a P-open set and B is a Q-closed set such that $B \subseteq A^c$.

By hypothesis there exist a P open set G and Q-closed set F such that $B \subseteq G \subseteq F \subseteq A^c$. Then $B \subseteq G$, $A \subseteq F^c$, F^c is a Q-open set and $G \cap F^c = \phi$. Thus there exist a P-open set G and a Q-open set F^c such that $B \subseteq G$, $A \subseteq F^c$, and $G \cap F^c = \phi$.

In J.C. Kelly [2], Theorem 2.7. is the generalization of Urysohn's Lemma. In this paper we prove that the sufficient condition also holds.

THEOREM 2.7. A space (X, P, Q) is pairwise normal, if and only if, given a Q-closed set F and a P-closed set H with $F \cap H = \phi$, there exists a real-valued function g on X such that,

[] g(x)=0 ($x \in F$), g(x)=1 ($x \in H$), and $0 \le g \le 1$.

[2] g is P-upper semi-continuous and Q-lower semi-con-

tinuous.

PROOF. Necessity. [2, theorem 2.7]

Sufficiency. Let A and B be subsets of X such that A is a Q-closed set, B is a P-closed set, and $A \cap B = \phi$. By hypothesis there exists a real valued function g on X such that,

 \blacksquare g(x)=0 $(x\in A)$, g(x)=1 $(x\in H)$, and

[2] g is P-upper semi-continuous and Q-lower semi-continuous.

Put $U = \{x | g(x) < \frac{1}{2}\}, V = \{x | g(x) > \frac{1}{2}\}.$ Then $A \subset U$, $B \subset V$, $U \cap V = \phi$, and U is a P-open set V is a Q-open set. Hence(X, P, Q) is pairwise normal.

Another necessary and sufficient conditions that (X, P, Q) is pairwise normal is in E. P. Lane [4].

THEOREM 2.8. In order for (X, P, Q) to be pairwise normal, it is necessary and sufficient that for every pair of functions f and g defined on X such that f is P-lower semicontinuous and g is Q-upper semi-continuos, and $g \leq f$, there exists a P-lower semi-continuous and Q-upper semicontinuous function h on X such that $g \leq h \leq f$.

PROOF. Necessity. [4, theorem 2.5]

Sufficiency. Let A and B be subsets of X such that A is a P-closed set, B is a Q-closed set, $A \cap B = \phi$. Define real functions $\chi_{x-A}: X \to R, X_B: X \to R$ by $\chi_{x-A}(x) = \begin{cases} 1 & x \in X - A, \\ 0 & x \in A \end{cases}$ $\chi_B(x) = \begin{cases} 1 & x \in B \\ 0 & x \in X - B. \end{cases}$ Then χ_{x-A} is P-lower semi-continuous, χ_B is Q-upper semi-continuous and $\chi_B \leq \chi_{x-A}$. By hypothesis there exists a P-lower semi-continuous and Q-upper semicontinuous function h on X such that $\chi_B \leq h \leq \chi_{x-A}$. Put $U = \{x:h(x) > \frac{1}{2}\}, V = \{x:h(x) < \frac{1}{2}\}$. Then $B \subset U, A \subset V, U \cap V$

36

 $=\phi$, and U is a P-open set V is a Q-open set.

DEFINITION 2.9. Suppose that P and Q are topologies on a set X. We say that P is completely regular with respect to Q in case every P-closed subset F of X and each point x in $X \setminus F$, there is a P-lower semicontinuous and Q-upper semicontinuous function f on X such that f=0 on F, f(x)=1, and $0 \le f \le 1$. The space (X, F, Q) is pairwise completely regular if P is P is completely regular with respect to Q and Q is completely regular with respect to P.

DEFINITION 2.10. [4]. A subset A of X is SC-embedded (resp. SC-embedded) in X if every real-valued (resp. bounded real valued) P-lower semicontinuous and Q-upper semicontinuous function on A can be extended to a P-lower semicontinuous and Q-upper semicontinuous function on X.

THEOREM 2.11. [4]. Every P-closed and Q-closed subset of a pairwise normal space (X, P, Q) is SC*-embedded.

DFFINITION 3.14. [4]. Let (X, F, Q) be a bitopological space. If f is a real-valued function on X that is P-lower semicontinuous and Q-upper semicontinuous, then $\{x \in X | f(x) \le 0\}$ is a P-zero-set with respect to Q, and $\{x \in X | 0 \le f(x)\}$ is a Q-zero-set with respect to P.

The terminology will be abbreviated as follows; a P-zero-set with respect to Q will be called a P-zero-set, and a Q-zero-set with respect to P will be called a Q-zero-set.

Let f be a P-upper semicontinuous and Q-lower semicontinuous function on X. Then, for every real number r, $\{x \in X | r \leq f(x)\}$ is a P-zero-set and $\{x \in X | f(x) \leq r\}$ is a Q-zero -set. Also, because $\{x \in X | g(x) \leq 0\} = \{x \in X | (gV_0)(x) = 0\}$, any P-zero-set is of the from $\{x \in X | h(x) = 0\}$, where h is P-lower semicontinuous and Q-upper semicontinuous and $h \geq$ 0. Similarly, any Q-zero-set is of the from $\{x \in X | h(x) = 0\}$, where h is P-upper semicontinuous and Q-lower semicontinuous and $h \ge 0$.

THEOREM 2.12. The space (X, P, Q) is pairwise completely regular if and only if the P-zero-sets from a base for the P-closed sets and the Q-zero-sets from a base for the Qclosed sets.

Before proving Theorem 2.12, we need the following Lemma.

LEMMA 2.13. For every P-zero-set F and each point x in $X \setminus F$, there exists a P-lower semicontinuous and Q-upper semicontinuous function f on X such that f(F)=0, f(x)=1, and $0 \leq f(x) \leq 1$ ($x \in X$)

PROOF. Let F be a P-zero-set. Then $F = \{x \in X | h(x) = 0\}$ where h is P-lower semicontinuous and Q-upper semicontinuous, and $h \ge 0$. Let $x_0 \in X \setminus F$, then by difinition of F, h(x) > 0. Put $f(x) = \min \{\frac{h(x)}{h(x_0)}, 1\}$, then f(F) = 0, $f(x_0) =$ 1, and $0 \le f \le 1$. Furthermore, f is P-lower semicontinuous and Q-upper semicontinuous. Since h is P-lower semicontinuous and Q-upper semicontinuous, and $h(x_0) > 0$, $\frac{h(x)}{h(x_0)}$ is P-lower semicontinuous Q-upper semicontinuous. So f(x) $= \min \{\frac{h(x)}{h(x_0)}, 1\}$ is P-lower semicontinuous and Q-upper semicontinuous,

PROOF of THEOREM 2.12. Let F be a P-closed set and x be an arbitrary point in $X \setminus F$. By hypotesis, $F = \bigcap F_L$ where F_L is P-zero-set for each L. Since $F = \bigcap F_L$ and $x \in F$, there exists a F-zero-set F_{L_0} such that $F \subset F_{L_0}$ and $x \in F_{L_0}$. Then by Lemma 3.16, there exists a P-lower semicontinuous and Q-upper semicontinuous function f on X such that $f(F_{L_0}) = 0$, f(x) = 1, and $0 \le f \le 1$. Then since $F \subset F_{L_0}$, f(F) = 0. Thus F is P-completely regular with respect to Q. Similarly Q is completely regular with respect to P.

Conversely, let F be a P-closed set. Then since (X, P, Q)is pairwise completely regular, for each point x_0 in $X - F_0$ there is a P-lower semicontinuous and Q-upper semicontinuous function f_{x_0} on X such that $f_{x_0}(F)=0$, $f_{x_0}(x)=1$, and $0 \le f_{x_0} \le 1$. Put $F_{x_0}=\{x \in X | f_{x_0}(x) \le 0\}$, then F_{x_0} is a Q-zero set and $F=\bigcap_{x_0\in X\setminus F^0} F_{x_0}$. Thus P-zero sets form a base for the Pclosed sets. Similary Q-zero sets form a base for the Qclosed sets.

THEOREM 2.14.[4]. If X is pairwise normal and if a subset A of X is a P-zero-set and a Q-zero-set, then A is SC-embedded in X

3. Pairwise paracompact spaces

DEFINITION 3.1. Let $\{A_{\alpha} | \alpha \in A\}$ and $\{B_{\beta} | \beta \in B\}$ be two coverings of a space X. $\{A_{\alpha}\}$ is said to refine (or be a refinement of) $\{B_{\beta}\}$ if for each A_{α} there is some B_{ε} with A_{α} $\subset B_{\delta}$.

DEFINITION 3.2. A refinement $\{A_{\alpha} | \alpha \in A\}$ of $\{B_{\alpha} | \beta \in B\}$ is called precise if A = B and $A_{\alpha} \subset B_{\beta}$ for each α .

LEMMA 3.3. If the space (X, P, Q) is pairwise Hausdorff. Then for a fixed point p in X, and for each point $q \neq p$ in X, there is a P-open neighbourhood $U_{(p)}$ such that $q \notin Q$ -cl $U_{(p)}$. Similarly there is a Q-open neighbourhood $V_{(p)}$ such that $q \notin P$ -cl $V_{(p)}$

PROOF. Let q be an arbitrary point in X such that $p \neq q$. Since (X, P, Q) is pairwise Hausdorff there exist a F-open neighbourhooh $U_{(p)}$ and a Q-open neighbourhood V(q) such that $U_{(p)} \cap V_{(q)} = \phi$. Then $U_{(p)} \subset V^{c}_{(q)}$, $q \in V^{c}_{(q)}$, and $V^{c}_{(q)}$ is Q-closed. Thus $Q-clU_{(p)} \subset V^{c}_{(q)}$. So $q \in Q-clU_{(p)}$.

LEMMA 3.4. If the P-covering $\{A_{\alpha}|\alpha \in A\}$ of X has a Q-neighbourhood-finite refinement $\{B_{\beta}|\beta \in B\}$, then it also has a precise Q-neighbourhood-finite refinement $\{C_{\alpha}|\alpha \in A\}$. Furthermore, if each B_{β} is a Q-open set, then each C_{α} can be chosen to be an Q-open set also.

PROOF. Define a map $\varphi: B \to A$ by assigning to each $\beta \in B$ some $\alpha \in A$ such that $B_{\beta} \subset A_{\alpha}$. For each $\alpha \in A$ let $C_{\alpha} = \bigcup \{B_{\beta} | \varphi(\beta) = \alpha\}$, some C_{α} may be empty. Clearly, $C_{\alpha} \subset A_{\alpha}$ for each α , and also $\{C_{\alpha} | \alpha \in A\}$ is a covering because each B_{β} appears somewhere; C_{α} is evidently Q-open whenever each B_{β} is Q-open. If $\{B_{\beta}\}$ is Q-neighbourhood-finite, then each point x in X has a Q-neighbourhood V such that $V \cap B_{\beta}$ $\neq \phi$ for at most finitely many indices β . And the number of $\{C_{\alpha}\}$ such that $V \cap C \neq \phi$ is less then $\{B_{\beta}\}$. Thus $V \cap C_{\alpha} \neq \phi$ for at most finitely many indices α , $\{C_{\alpha}\}$ is therefore Qneighbourhood-finite refinement.

LEMMA 3.5. [1] Let $\{A_{\alpha} | \alpha \in A\}$ be a neighbourhood-finite family in X. Then;

 $[] \{clA_{\alpha} | \alpha \in A\} \text{ is also neighbourhood-finite.}$

2 for each $B \subset A$, $\bigcup \{A_s | \beta \in B\}$ is closed in X.

DEFINITION 3.6. A pairwise Hausdorff space (X, P, Q) is pairwise paracompact if each P-open covering of X has a Q-open neighbourhood finite refinement and each Q-open covering of X has a P-open neighbourhood-finite refinement.

THEOREM 3.7. Every pairwise paracompact space is pairwise normal.

PROOF. We first show that the pairwise paracompact space is pairwise regular. Let A be a P-closed set in X and y be a given point in X such that $y \in A$. Since (X, P, Q) is pairwise Hausdorff. We find by Lemma 3.3, that each $a \in A$ has a P-open neighbourhood U_a with $y \in Q$ - $cl U_a$. Since $\{U_a\}$ $a \in A \} \cup \{A^c\}$ is a P-open covering of X, we use pairwise paracompactness and Lemma 3.4, to get a precise Q-neighbourhood-finite open refinement $\{V_a | a \in A\} \cup G$. Then $M = \bigcup$ $\{V_a | a \in A\}$ is Q-open and contains A. Furthermore, because $\{V_a\}$ is Q-neighbourhood-finite, Lemma 3.5. shows that Q $clM = \bigcup \{Q - clV_a | a \in A\}$ and since $y \in Q - clU_a \supset Q - clV_a$ for each $a \in A$, we find $y \in Q$ -clM. Since (X, P, Q) is pairwise Hausdorff, and $y \in Q$ -clM, we find by Lemma 3.3. that each $b \in Q$ -clM has a Q-neighbourhood W_b with $y \in P$ -clW_b, since $\{W_b | b \in Q - clM\} \cup \{(Q - clM)^c\}$ is a Q-open covering of X, we use pairwise paracompactness and Lemma 3.4. to get a precise P-neighbourhood-finite open refinement $\{T_{k}|k \in Q\}$ $clM \cup H$. Then $N = \bigcup \{T_b | b \in Q - clM\}$ is P-open contains Q-clM. Furthermore, because $\{T_b\}$ is P-neighbourhood finite Lemma 3.5. shows that $P-clN = \bigcup \{P-clT_b | b \in Q-clM\}$, and since $y \in P - clW_s \supset P - clT_b$ for each $b \in Q - clM$, we find y Then $y \in [P - clN]^c$, $(P - clN]^c \cap M = \phi$. i.e. there $\in P$ -clN. exist a P-open set $(P-clN)^c$, Q-open set M, $y \in (P-clN)^c$, $A \subseteq M$ such that $[P - clN]^c \cap M = \phi$. So P is regular with respect to Q, similarly Q is regular with respect to P. Thus (X, P,Q) is pairwise regular. We now prove that X is pairwise normal. Let A be a P-closed set, B be a Q-closed set with $A \cap B = \phi$. Then for each $b \in B$, $b \in A$. Since (X, P, Q) is pairwise Hausdorff, we proved above that for each $b \in B$ there is a Q-open set M_b such that $A \subseteq M_b$ and $b \in Q$ -cl M_b .

Then $A \subseteq \bigcap_{b \in B} Mb$, $(\bigcap_{b \in B} Q - clMb) \cap B = \phi$. Put $M = \bigcap_{b \in B} M_b$, then $A \subseteq M \subseteq Q - clM$ and since $Q - clM = Q - cl(\bigcap_{b \in B} Mb) \subseteq \bigcap_{b \in B} Q - clMb$, Q-cl $M \cap B = \phi$. Since (X, P, Q) is pairwise regular, for each $a \in Q$ -clM, there is a Q-open ses U_a and P-open set V_a such that $a \in U_a$, $B \subset V_a$, and $U_a \cap V_c = \phi$. Therefore for each $a \in Q$ -clM, there is a Q-open set U_a such that $a \in U_a$ and $P-c'U_a \cap B = \phi$. Since $\{U_a | a \in Q-c!M\} \cup \{[Q-c!M]^c\}$ is an $Q-c!M \cup \{[Q-c!M]^c\}$ open covering of X, we use pairwise paracompactness and Lemma 3.4 to get a precise P-neighbourhood-finite open refinement $\{V_a | a \in Q - clM\} \cup G$. Put $N = \bigcup \{V_a | a \in Q - clM\}$, then N is P-open and Q-clM $\subseteq N$. Furthermore, because $\{V_a\}$ is P-neighbourhood-finite, Lemma 3.5 shows that P-clN= $\bigcup \{P - clV_a | a \in Q - clM\}$. Since $P - clU_a \supset P - clV_a$ for each $a \in Q - clV_a$. Q-clM, and $B \cap P$ -clU_a= ϕ , we find $B \cap P$ -clN= ϕ . So we find a Q-closed set Q-clM, P-closed set N^c such that $A \subseteq Q$ -clM, $B \subset N^c$, and Q-clM $\cap N^c = \phi$. Since Q-clM is Qclosed, N^c is P-closed, and $Q \cdot clM \cap N^c = \phi$, as we proved above there is a set H uch that $N^{c} \subseteq H \subseteq Q - clH$ and Q - clHThen $A \subseteq Q - clM \subseteq (Q - clH)^c$, $B \subseteq (P - clN)^c$ $\bigcap Q - clM = \phi$. Since $(P-clN)^{\circ} \subseteq H \subseteq Q-clH$, $(Q-clH)^{\circ} \cap (P-clN)^{\circ} = \phi$. In other word, there exist P-open set $(P-clN)^c$ and Q-open set $[Q-clH]^c$ such that $A \subseteq [Q-clH]^c$, $B \subseteq [P-clN]^c$ and $(Q-clH)^c$ clH]^c \cap {P-clN]^c= ϕ .

EXAMPLE 3.8. In a real line R, let P be the usual topology and Q be the topology generated by the open-closed interval (a,b] $(a,b \in R, a < b)$. Then (R, P, Q) is a paiwise paracom pact space.

References

- [1] J. Dugundji, Topology, Allyn and Bacon, INC., Boston, 1966.
- [2] J.C. Kelly, Bitopological Spaces, Proc. London Math. Soc. (3) 13 (1963) 71-99.
- [3] J.L.Kelly, General topology (New York. 1955)
- [4] E.P. Lane, Bitopological spaces and quasi-uniform spaces, proc. London Math. Soc. (3) 17 (1967) 241-56.
- [5] J.D. Weston, On the comparison of topologies. J. London Math. Scc. 32 (1957) 342-54.

Won HuH Department of Mathematics Pusan National University Pusan 607 Korea

Yong Mun Park Korea Naval Academy Jinhae 602 Korea