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ON THE EXISTENCE RESULT FOR AN ABSTRACT
NONLINEAR DIFFERENTIAL EQUATION

JonG Soo June

I. Introduction

Let X be a real Banach space with norm || [{ and UCX be
an open set.

The purpose of this paper is to study the local existence
of the integral solution in the-semse of Benilan [2], for the
initial value problem

D auys R, 0sisT,
w(@) =u,,

where ACXXX is a m-accretive set, F is a mapping from

CO,7,U) into C0,T:X) and u,=D( AN,

Under different assumptions than ours, this problem has been
studied in [1,6,7,9].

Section 2 is a preliminary part. In section 3, we establish
the existence of integral solution of problem (E) in the case
which (J4+XA) ! is compact for all A>0 and F satisfies an
appropriate bounded condition. Section 4 is devoted to the

contiuation of solution and an example.
2. Preliminaries

Throughout this paper, X is a real Banach space with norm
H 1l and X* is its dual space with the corresponding norm
] 5. Let J:X-2%* be the duality mapping, ie.:
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QD JD={z*eX*: <z, z%> =]zl =]lz¥x}

for each z&X. For each (z,y)EXxX, define

2.2 {y, ) ;=sup{{y, ¥ T*=J(2)}.

We recall that the mapping (, )1 XX X-R is upper semicon-

tinuous, If ACX XX and z&X, we denote by Ar={yeX:

(z,y)EA}, DAY={z&X: Azx#¢), RA=UlAz: zc

D(A)} and |Az|=inf{|ly]] : yAx). For each set DCX, D

represents the closure of D. For x&X and >0, we denote

by B(x,r) the closed ball with center x and radius 7.
DeriNiTION 2.1, ([9]) A continuous function w:(0,T]—

D(AYNU with u(0)=u, is called an integral solution of

(BE) if

(2.3

e O

Ha(2)— x| P2 u(s) — z||?
+2{ <F@)8)~y, u(6) - x> .48
Jor all (z,y)EA and 0<s<:<T.
Let ACXXX be an m-accreative set and f&L*0,T;X).

We recall that a function #:[0,71—~X is called a strong
solution of the initial value problem

2.4 —‘%;—)—+Au(t)9f(t), 0<t<T,
2.5  w®=u

if » is differentiable almost everywhere on (0,771, absolutely
continttous and satisfies #(0) =, and 2’(¢)+ Au(t)=>f(¢) almost
everywhere on {0,7°]). It is well known that the initial value
problem (2.4),(2.5) has a unique integral solution on [Q, 7.
Every strong solution of (2.4),(2.5) is also an integral solu-
tion of (2.4),(2.5) (see {17 [2]). Moreover, if % and v are
two integral solution of (2 4),(2.5) corresponding to
f(—':'Li(O,T;X) and g0, T;X) respectively, then

2.6)  [[u@—v®II*<[lul(s)—v(II?
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+2{" < £ - 2(8), u(@) ~v(8> df
for all 0=s<¢t<T. From (2.6), we also have that

@D l@-v®Ol= a2l + [ 1176 - g@)ilds

~

for all 0=s<t<7T. For the proof, see [17,[2].

It is well known that each m-accretive set ACXXX
generates a nonlinear semigroup of contrctions S(¢): D(A)—
D(A), strongly continuous at the origin (see (1], [5]).

Using (2.7), we verify easily the following lemma (see also
£161).

LemMmA 2.1, Let w:[0, T1-D(A) be an integral solution
of (2.4),(2.5), t<[0, T), s=(0, T, hER, with t+h=[0, T)
and s—h<[0,T1, Then, the following inequalities hold:

2.8 NuCe)—a(e+ = NShDug— ol + | JT@ids

+ 11 £O+ Ry~ 7c6)l1a6
and

@9 el —uls— SIS~ ol | + | 11£O)1Idb

+ 1A= —F)\as.

The following lemma has been obtained by Brezis [4].

Lemma 2.2, Let ACXxX be a m-accretive set and Jy,
=I+NA) for A>0. Then, for every x=D(A), t>0 and
A>0, we have the follwing inequality

@.10) Nl —RHalS @2 (') z - S lidb,

Y0

and in particular

Q1D He—Jalis-4{ llz- S@)=lidb.

DEFINITION 2.2, A mapping F:C(0, a;U)—C(0,a;X) is
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called L”-bounded if for each T<(0,al, v=C(0, T;U) and
>0, there exists gL (0, T;R.) such that
(2.12) HF@MO||£g@) a.e. on [0, T
for all u=CQ, TU) with |u(®)—v(l| 7, for 02T,
We conclude this Section with following lemma.
Lemma 2.3. Let F be L™-bounded and T=(0,a]l Then,
Jor v&C0, T;U) and r>0, the following relations:

@18 lim [ IFa()—F@)(s+m]lds=0, 05:<T,

@19 lim{ ||FG))—~Fw)(s-Dllds=0, 0<¢<T,

hold, uniformly with respect to all ucC0, T,U) with
() —v(Oll=r for 0=t=T.

Proor. This follows directly frem Lebesgue convergence
theorem,

3. Existence

THEOREM 3. 1. Assume that

(C)) X is a real Banach space and UCX is a given
open sei,

(C,) ACXXX is a m-accretive set and (I+MA)! iscom-
pazt for all x>0

(Cy) F:C(0, a;U)—C(0, a; X) is continuous and L~ -bounded.
Then, for each ugcD(AINU, there exists T<(0,al such
that problem (E) has at least one integral solution on
[0, 71.

REMARK 3.1. We note that in the case in which X is a
real reflexive Banach space and F(#) is of bounded variation,
where #&C(0,a;U) is of bounded wvariation, the integral
solution « provided by Theorem 3.1 is a strong solution (see
[1] {73), as well as, in the case in which X is a real refle-
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xive Banach space, % is a weak solution (see [1]).

Proor. Let %,&D(AXYNU and choose T>0, r>0 and g
eL"(0, T:R.) such that
(3.1)  B(uy,r)<D(AINU,
3.2) HE@()||£8() a.e.onloT]
for all u=C(0, T;U) with [Ju(t) —~ul|<r for 0=2¢<T andin
addition,

3.3 [ gdstISOu— |7

for all 0<¢<T. From _condition (C,) and continuity of S(2)
at the origin, we can choose such constants 7,7 and
gcL”(0, T;R,). Now we set

(3.4) K={ucC0, T;U);u(t)EB(uy r) for all 0=¢<7T}
and we deduce easily that K is nonempty, convex and closed
in C(0, T;X). Let v&K. Then, by Benilan’s existence and

uniqueness theorem, the initial value problem

@5 LD 4 susRE®, 02T,

3.6) u(()=u,

has 2 unigue integral solution #&C(0, T:X). Therefore we
define the operator @:K—C(0, T;X) by Qu=u, where z and
v satisfy together (3.5),(3.6). Now let us observe that the
problem (E) has at least one integral solution if and omly if
the operator @ has at least one fixed point. Thus it suffices
to show the operator @ maps K into K and is completely
continuous. To this end, we apply (2.7) to Qv and to the
solution w of the problem

B.D dtffgt) + Aw()>0, 0T,

3.8) w(0) =%,
Since the integral solution of (3.7),(3.8) is expressed as
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G w®=SOu,
we obtain from (2.7)
G.10) @)@~ Sulls [ IIFwXS|Ids

Combining (3.10) with
. 11)  {1QuX (@) —ul | /(@) () — S(Duy|| + 115D 2o — %ol
we get from (3.2)
(3.12) Qo)D) —ul|S [ g()ds+ 15— 0ol
which in view of (3.3) implies
(3.13) QY@ —uefiLr for all 02T

But (3.13) show that QKCK. It is easy to show that Q
is continuous on K in the uniform convergence topology (see
[91). To conclude that Q is completely continuous, we shall
use-Ascoli’s theorem. First we show that the family {Quiv
€K} is equicontinuous on [0, 7']. Using Lemma 2,1, we get
(3.14) Q) — Q)+ M|

< 1SChuo— el |+ [ 1P ds
+ [ |1F@) ()~ Faod)(s+ Bl 1ds
for each 0=t <T and A>0. From (3.2), we deduce
G.15) QWO —(@+BI]
< ISGu—wll+§, g()ds
+ | NP9~ Fo)(s+Rids.
In a similar manner we get, for each 0<¢<T and 0<h=Z({,
GBI HEQD®O—(Qu)-R|
S USUhu—uol |+ gC)ds
+ (IR~ Feuy(s—~Bl1ds.

Considering (2.13) and (2.14) in Lemma 2.3 and the contin-
uity of the semigroup S(¢) at the origin, we obtain from
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(3.15), (3.16) the equicontinuity of the family {Qu;v&K]).
Next we show that for each 0=¢< 7T, the set {(Qu)(#):vEK])
is precompact in X. Obviously for £=0, the set above being

a singleton {#p} is precompact. Then, let 0<¢< T and 0<<9 <2,

v&K and consider the following initial value problem

@1 W

+ AV ()20, t—O0<s£E+6,

(3.18) - =(QuYE—.
Applying (2.7) to v° and to Qu on [£—0,¢t], we get

319 QD@ OI(_IF@OIdr.
From (3.2) and (3.19), it follows that
(3200 1Qe®O-v@IE] glrdr.

Now by the ineguality (2.10) of Lemma 2.7, we get

G2 Q0= Q|
=1+ 2 ZJ110QuI® - S0 QuXDI|45.

Let us observe that
(3.22) HQw(@) - S QX!
= (QouX()—SE Q-]
+ ISRt —6)— S QuI(H]
for all 0<<#<t. In view of the equality
(3.23)  SOOQuIE—-D=="(2).
we get from (3.20) and (3.23)
B.24)  1Qu(®)— S Qv
< Qv(®) —v' (DI + 1S Q) — ) — SEX Qv
<[ grdr+11(Qu)(z—)— (@I,
Using(3. 24), we get from(3.21) for A=s&(0, £),
(3.25) HQuI(E)— I\ (Qu) (||

4]’ gmdr+4 [ 1@ G-0)- @114,

H
42 R
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As family {Quiv<K]} is equicontinuous at each 0=:<7T, it
follows that

3.260 Q)6 —(QuX(DI|=(H),

where ¢(A) is nondecreasing and e(h)—0.. as A—0, Thus from
(3.25) and (3. 26), we obtain

G20 @O-IA@DII=4] grdr+e).

Since JA=({7+xA)" is compact by (C,) and {(@v)(&);veK}
is bounded for all 0<t< T, we conclude from (3.27) that the
set {(Qu)(¢) :v&K} is precompact in X for all 0<¢<ZT.
Therefore by Ascoli’s theorem QK is relatively compact in
C(0, T';X), which complete the completely continuity of Q.
Finally, to prove Theorem 3.1 we have only to mention
that the operator @ satisfies the hypotheses of Schauder’s
fixed point theorem, and thus @ has at least one fixed point
u=K, which is an integral solution of the problem (E).

COROLLARY 3.1. Assume that X is a real finite dime-
nsional Hilbert space, ACXXX is a m-accretive set and
(Cy) is satisfied. Then, for each uy=D(AYNU there exists
T>0 such that the problem (E) has at least one strong
solution on[0, T1.

Proor. As X is finite dimensional and ACXXX 1is a
m-accretive set, it follows that the operator JA=(I+1A)! is
compact for all A>0 and therefore we are in the hypotheses
of Theorem 3.1. Now we have to remark that in the case in
which X is finite dimensional Hilbert space, each integral

solution is a strong solution (see [31).

4. Continuation of solution, example

In this section, we shall give a result about the contin-

uation of solution and an example which is an application of
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our results.

THEOREM 4.1.. Assume that (C)), (Cy) and (C;) are
satisfied. Then, for each u,=D(AYNU, there exists an
integral solution u of (E) defined on a maximal interval
of existence 10,T,.,.), wkere either T,,.=a or if T pee<a,
then Hu()ll—»co as t1 T,

PrOOF., Let u(¢) be an integral solution of problem(E) on
(0,#]. We extend u(#) to the interval[0,#+81 with by
defining

u(t+ 1) =w(t),
where w(#) is an integral solution of the problem

(4.1) %%)— + Aw (S Flw)(@),
4.2 w(0)=u(z).

From Theorem 3.1, there exists an integral solution w(#) on
an interval of positive length &>0. Let [0,7T,.) be the
maximal interval to which the integral solution z(#) of
problem (E) can be extended. Now we shall prove that if
T e <a, them [|u(2)||-+c0 as ] T,y First we show that

if T,..<a, then litn sup ||lu(z)]|=c0. To this end, assume
T

s max

that if 7,,..<a, 1ir'1}Tsup {te(#)]| <oo. Then there exists K>0
such that for 0§2<T;,,a,,
4.3) He(OI =K.
and by our assumption on function F, there exists
g L0, T pees R.) such that
4D |FeM£g(®) a.e.on [0, T, 1.
If 0<¢<t’ <T oy then we have from (2.6) that
/
@5 Hu@)—uOIE=2] <Fu)@) -y, u(0)~u()> 46

<2{ HFGO@ 311118 —oild
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< 4k [ Q1FuON + 146018
< 4KTllgll )

1 nax’ +

+ " 1Au@>1a8],

where ((2),y)EA. From (4.5) we get |[u(t)—u()||—0 as
¢, t1T,,.. Thus lim u(¢)=u(T,,,) exists and by the first

part of the proof, the solution z can be extended beyond
T..., contradicting the maximality of 7',,,. Therefore the
assumption 7T, <a implies lim supl|u(Z)}]=co. To complete

max

the proof, we show that ||«(2)||—c0 as¢1 T,,,. If it is false,
then there exist K>0 and a sequence {¢,} such that ¢, T .
and for all #_and x&=D(A),

(4.6)  |luCz)—=zl|’SK.

We also deduce that

4.7 [|1FGH | +H1Ax|£g(8)+ M a.e.on [2, T, ]

for some g&L”(0, T,,..;R.) and some M>0. Since t—
||2(#)— x|| is continuous and li{;q supHu(z)||=o0, there exists

a sequence {A,} with the following properties: 2,—0 as n—oo,
4.8 u@)—z|’£K+1

for t,<t<t,+h, and

4.9 Ju@+h)—2|’=K+1.

Then we have from (2.6)

(4.10) K+1=|luCt,+h)—z|]®

<lluC) -zl +2 [ <F@©@)~y, w@) — x> db

<K+2{ " IFGO@ -1 128>~ 211d8
<K+2vE+1el . + M,

TR

' maxa.
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where (x,y)EA. This give a contraction as n—oco Thus we
conclude that [|u(¢)|[—c0 as ¢ T,., which completes the
proof of Theorem 4, L.

We note that each continuous function f:[0,alXU—X
generates a unique continuous function F:C(0,a U)—

C(0, @;X). Thus we obtain the following.

CoroLiARY 4.1. Assume that (C)) and (C,) are satis-
fied end in addition that fi[0,00)xXU—X is a continuous
mapping. Assume further that
@1 [ fG =KWzl + K,
for each (7, 2)EI0,00)xU, where K,&L,(0,00;R) and
K,&R. Tken, for each u,cD(AYNL, tlhere exists an int-
egral solution of (E) defined on the whole positive half
axis,

Proor. From(4.11), it is easy to show that a function F
generated by f is L”-bounded, and hence, by Theorem 4.1,
the Corollary follows.

ExamMPLe 4.1. Let O be a bourded open subset of R*
with sufficiently smooth boundary . Let W ’p(Q), w,"’
(), H*(Q) and Hi(Q) stand for Sobolev spaces on .

We consider a nonlinear differential operator of the form

(4.12) Auw= 3 (—1)*DA(z, % Du, ... D),

l2)@m

where A.(x,2) are real functions defined on QOxR" and
satisfy the following conditions:

(I) A, are measurable x and continuous in 2z for all a.
There exist p>1, gELa(Q) (—;—4-—;—:1) and a positive co-

nstant C such that

(4.1 A 2,202l +2(2)) a.e. zEQ.
(II) For any (y,z)ERmem and for almost every &L,
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the following inequality holds:
414 X (Adx, )ALz, )z, '_ya)zw( E 1Za =5l

la] S

where w> 0.
We recall that the operator A:Wp' (Q) — W' Q)
defined by

(4.15) (Au,2)= X [A,,,(x,u Du, ..., D*&)Dvdx

jarf S

m_ g .
for u,v=W, ' (Q), is monoione and demicontinuous and

(4.16)  HAull,<CQ+ 2l D
(see '11).

Now we consider the nonlinear boundary value problem of

the parabolic type

@1 2y (DDA U Dy, .., DWO=f

with Dirichlet boundary conditions

(4.18) Deu=0on [0,TIXTI for {d|sm—1
and initial condition

4.19) 1{(0, £)=u,(x) on L.

THEOREM 4.2, Let H=L*(Q), V=H,"(Q) and A: Hy"(Q)
—H "(Q) be the nonlinear operator defined above. Let
F:[0,00)x H-H be a continuous function Then, for us=H,
there exists T>0 such that (4.17), (4.18), (4.19) has at
least one integral solution on [0, T].

Proor. Let Ay be a operator defined by
(4. 20) Apu=Au
for ucD(Ap)={ucV:Auc H}, Then A, is a m-accretive
operator on H (see [17,[9)). Now let us remark that (4.17),
(4.18), (4.19) can be rewritten in the form

C4.21) d“"(‘) L) 4 a0 =F)),
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(4.22) w(0)=u,,
where
(4.23) FCu)()=f(2, u(£)).

Since Ay is coercive by (II) and the inclusion mapping from
V into H is completely continuous, we can show that
(J+AA4)71 1s compact for A>>0. It is easy to see that for each
T>0, F:CO,T,H)-C(0, T;H) is continuous, Since
Ftou())e=H for any usC(0, T :H), it is obvious that F is
L”-bounded. Therefore by applying Theorem 3.1, we obtain
the conclusion of Theorem. 4.2,
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