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Jacknife and Bootstrap Estimation of the Mean Number of
Customers in Service for an M/G/ o

Park, Dong Keun*
Abstract

This thesis studies the estimation from interarrival and service time data of the mean number of
customers in service at time t for an M/G/o queue. The assumption is that the parametric form of
the service time distribution is unknown and the empirical distribution of twe service time is used
in the estimate the mean number of customers in service. In the case in which the customer arrival
rate is known the distribution of the estimate is derived and an approximate normal confidence
interval procedure is suggested. The use of the nonparametric methods, which are the jackknife and
the bootstrap, to estimate variability and construct confidence intervals for the estimate is also

studied both analytically and by simulation.

I. Instruction

The concern of this thesis is inference problems for a particularly simple queueing model, the
M/Gfe> queue. In this model, customers arrive according to a poisson process with rate A and there are
an unlimited number of independent servers. Service times for each server are independent, identi-
cally distributed with distribution function F. Let X(t) be the number of customers being arrived at
time t. It is well known that if there are no customers being served at time 0,

PiX(t)= n}zMexp[- M(t)}
K! (1-1)
then where M(t)=A f 2) F(s) ds with F(t) =1 —F(t) [Ref. 2]. Thus the distribution of X(t) is poisson
and is characterized by its mean M(t).

In this thesis we will assume that the service time distribution F(t) is unknown and must be

estimated from service time data and that the arrival process is known to be poisson, except possibly

for its rate A. We will study the estimation of the mean number of customers being served at time t,
M(t).
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We generally divide the estimation method into two cases which we shall call “parametric estima-
tion” and “nonparametric estimation”. In the parametric estimation case, a particular probabilistic
model is specified for the service time distribution and the parameters of the distribution are
estimated. In the nonparametric estimation method, the empirical survivor function is used in the
estimate of the expected number of customers. The jackknife procedure and bootstrap procedure are
considered and compared by simulation.

In most cases, parametric assumptions concerning the service time distribution are difficult to
justify. Hence nonparametric estimation procedure may well be preferred to parametric estimation
when actual data is used. However, the nonparametric estimates can be expected to be less efficient

than the parametric ones.

I1. Jackknife estimation method

In this chapter, we will study the jackknife procedure for obtaining a confidence interval for
M(t). The jackknife was first introduced by Quenouille (1949) for the purpose of reducing the
estimate bias, and the procedure was later utilized by Tukey (1958), to develop a general method for
obtaining approximate confidence intervals [Refs. 7,8]. .

The basic idea of the jackknife estimation method is to assess the effect of each of the groups
into which the data have been devided, not by the results for that group alone, but rather through
the effect upon the body of data that results from omitting that group. The two bases of the jack-
knife are that we make the desired calculation for all the data, and then, after dividing the data into
groups, we make the calculations for each of the slightly reduced bodies of data obtained by leaving
out just one of the groups. A special case of jackknife estimation is called the “complete jackknife
estimation”, where the number of subgroups is n (the size of sample); the ith subgroup is obtained
by deleting the ith observation; thus the size of each subgroup is n-1 [Ref. 9]. Attention will be
restricted to complete jackknife estimation in this study.

Let r&,il_l(z) be the estimated mean number of customers being served at time t on the portion
of the sample that omits the ith sample. Let I\I}iau(t) be the corresponding estimator for the entire

sample and define the ith pseudo-value by

A A A
M,(t)=n Mg, (t)—(n-1) Mz_,(t)

(-1
A A
The jackknife estimate M](t) and an estimate Sf of its variance are given by
A 12 oa
M./(I)=—;.§ M;(0) 2-2)
A2 B I n A A 2
S;  hna “ {M‘(‘)_M"“ﬂ (2-3)
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Tukey (1958) proposes that the n estimated pseudo values be treated as approximately independent
and identically distriboted random variables [Ref. 9]. Hence, the statistic

Vo (M0 fiau(» | |
[ S M)—M (0] 2-4)

has an approximate t-distribution with n-1 degrees of freedom, which leads to the approximate
100(1-a)% confidence interval \

-$5s (2-5)

where t l'f is the upper l-%—critical point of the t-distribution with n-1 degrees of freedom. The

confidence interval given by equation 2.5 is a function of the estimated variance. In the remainder
of this section, we will describe several methods of implementing the confidence interval procedure.
We will also obtain an analytic expression for the jackknife estimate and its variance estimate for the
case in which the arrival rate A is known.

1. Jackknife Estimate with Known Arrival Rate

The jackknife estimate is based on sequentially deleting point S and recomputing the estimator.
Removing point S from data set gives a different empirical probability distribution %n-l with mass
rﬁ at 8,, S,, ..., Si- I S=+1, ey Sn and a corresponding recomputed value of the estimate. In the
jackknife process, the ith pseudo value is

At if i> k
AS it i< k (2-6)

for the fixed time t and where X is the constant value, Accordmgly the pseudo values M {(t) have

just K+1 different values. The Jackkmfe estimate is

k
MO = A5 5 s, -2k (27

This result is exactly the same as the original estimate. This is because the estimate ICIJ(t) is unbiased.,
We will now describe two selected procedures to obtain confidence intervals for the jackknife
estimate. Tukey suggested that the statistic in equation 2.4 has an approximate t-distribution with
n-1 degrees of freedom, which leads to the approximate two-sided 100(1-a)% confidence interval

M) + 1, g/ Var (MU (2-8)
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for M(t), where tl% is the upper 1—%— critical point of the t-distribution with n-1 degrees of
freedom. However, the n estimate pseudo values have just K+1 different values. Hence, another
possible procedure is to adjust the degrees of freedom of the t-distribution, that is, subtract one from
the number of different pseudo values (K+1), and use the result as the degrees of freedom. The
length of confidence interval generated using the adjusted degrees of freedom (K) is slightly wider

than that generated using the usual degrees of freedom (n-1) and the coverage rate should be increased.

2. Jackknife Estimate with Unknown Arrival Rate

In this subsection, it will be assumed that the rate of Poisson arrival process is unknown and

must also be estimated. The maximum likelihood estimate is }\ n/ ZIIY where Y is the interarrival
l.—
time between i'! and G- l)th customers. A nonparametric estimate of mean number of customers

being served at time t is given by

V(1) = | (29)

where S/’s are the order statistics. It is assumed that the S;’s and Y’s are independent. The variable

K is the number of Si’s which are less than t. The data consist of two independent random samples,
81,83, e, Sy~ Fand Yy, Yy, ., Y, ~Q

Fand Q being two possibly different distribution on the real line with Q, the exponential distribution

with mean7\— F rom equatlon 2.9, the estimate MN(t) is the product of twokestlmates One is the
function of Y 7\ =qn/ El Y, and the other is the function of S;, H(s) =% .EISi +-'ln£t. There are
i= g

many possible ways to perform a two-sample jackknife procedure. We will call one method the
“paired sample jackknife” procedure. Since the size of both samples is the same, we make the one
set of observations by pairing respective observatlons that is, (s, y1), (82, ¥2), ..., (5 Sp> Y- 1}5 with
the one-sample jackknife, we estimate the M (t) for all the data, and then, we estimate Mn 10

based on the remaining data obtained by leaving out just the ith pair. Thus the ith pseudo value
M (t) is

Mia)=nﬁﬂﬂg-opnﬁn5u) (2-10)

A .
and the jackknife estimate MJ(t) and variance estimate are given by

n A
My (=5 £ Mo
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Based on these statistics, an approximate two-sided 100(1-a)% confidence interval is given by

A A
M(t)+t, 2 S, (2-11)

where t,_a is the upper 1—% point of t-distribution with n-1 degrees of freedom. A second method is
called the “separated sample jackknife” procedure. Since we assumed that the X’s and Y;’s are
independent, we can perform the jackknife procedure separately for each sample, and then, estimates
which combme jackknife estimates and the Jackkmfe vanance estimate can be computed.

Let M“(t) be the jackknife estimate of )\ and VY be the jackknife variance estimate for A.
Let I&n(t) be the jackknife estlmate of st o F(s) ds and V be its jackknife variance estimate.' Then
the combined jackknife estimate of MJc(t) is

MJC(t) = MJl ®) M’J2 ® (2-12)
and the combined jackknife variance estimate is

A A A
§ = Vo Vo VM0 4 Vi [Ma? (213)

I\l’\‘«lc([)i_ L e gJC/\/_r—]— (2-14)

where t; % is the upper 1-& -3 point of t-distribution with n-1 degree of freedom.

III. Bootstrap Estimation Method

Efron (1979) introduced the bootstrap method for estimating the distribution of a statistic
computed from observations [Ref. 10]. The bootstrap estimate is obtained by replacing the
unknown distribution by the empirical distribution of the data in the definition of the statistical
function. In practice, the distribution of the statistic is approximated by Monte Carlo methods.

For convemence the arrival rate is assumed to be known and equal to 1, then the nonparametric
estimate MN(t) is just a function of service times. This is a one-sample problem. The bootstrap
procedure is as foliows:

1) Suppose that the data points X, x5, ..., X, are independent observations from the unknown

distribution F. Then the true estimate is

Mty = /4 F(s) ds (-1
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2) We can estimate the distribution F by the empirical probability distribution F .

F: massl—l1 on each observed data point X,

i=1,2,..,n

3) The bootstrap estimate of MN(t) is
My()= L Fa(s) ds (32)

A
To obtain an estimate of variability for Mp (t), we procede as follows;
(a) Construct F, the empirical distribution function, as just described

(b) Draw a bootstrap sample Xj , X5 , ..., x; by independent random sampling from F .

Notice that we are not getting a permutation distribution since the values of X;“ are selected with
replacement from the set (X, X3, ..., X;). As a point comparison, the ordinary jackknife can be
thought of as drawing samples of size n-1 without replacement.
(¢) Compute an estimate of Mp(t) for each bootstrap replication, M;J (t), that is, the value of
statistic evaluated for the bootstrap sample.

M) =+ 3 X+ 03] TS 0)e 33)

Xi<t

where 1(x <t) = {1 if x <t

0 otherwise

(d) Do step (b) some large number “B” times obtaining independent bootstrap replicafions
* * *
My (), My (1), ..., MaB (©).
Based on the bootstrap replications, the approximate estimate of Mp(t) and its variance are obtained

by

M, (1) = Bl BZ M3H(t) (3-4)
BT (-5)

So far we have considered the problem, where the arrival rate is known. The bootstrap metho-
dology also applies if the arrival rate is unknown and is estimated from interarrival data. Suppose
the data consist of a random sample X = (X,, X,, ..., X,,) from unknown service time distribution
F and an independent sample Y = (Y,, Y,, ..., Y,)) from the exponential interarrival time distribution
G with unknown parameter X. One bootstrap procedure to estimate the expected number of custo-
mers being served at time t is to construct F, and G, the empirical probability distribution cor-
responding to F and G. Bootstrap samples X;~ Fn, i=1,2, ..., n, Yf‘*' Gn’ j=1.2, ..., n, are indepen-

dently drawn, an estimate of My
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n

n
Mi() =" L 5 Xt gln-§ 1=l (3:6)
E n ., n =
is calculated. As before there are a large number B of bootstrap replications. For this case, the
bootstrap estimate of MN(t) and its variance are still given by equations 3.4 and 3.5. There appears
to be no closed form of the analytical variance of MB(t) in this case. Now we will describe methods

to obtain approximate confidence intervals for the bootstrap estimate MB(t)

1. The Percentile Method

A simple method for assigning approximate confidence intervals to the nonparametric estimate
M(t) is as follows:
Let

é(t) _#of {Ng,(t)é tf 37)

be the cumulative distribution function of the bootstrap distribution of Mp(t); B is the number of
bootstrap replications. For a given 0 < a < 0.5, define

A A 1 A A‘-I

L@=C" (), U(@=C"(1-a) (3-8)
Usually denoted simply by II\. and Il} This definition runs into complications when we actually try
to compute quantiles ﬁand ﬁ from a set of bootstrap replications. To overcome these difficulties,
we order the bootstrap replications from smallest to largest, obtaining the sorted data M;i (t), for
i=l to B. Letting represent any fraction between 0 and 1; take Q) to be MN (t) whenever Q is
one of the functions « ——Lg*i for i=1 to B. Thus L(a) turns out to be the (BXR «+0. S)th I\} (t)
and U(a) to be the (B% (l-a)+0. 5)th N‘(t). The percentile method consists of taking

( L), U (@) ] (39)

A A A
as an approximate 1-2¢ confidence interval for My (t) since o=C(L), 1-a = C(U), the percentile
method interval consists of the central 1-2a proportion of the bootstrap distribution.

2. The Bias-corrected Percentile Method

Efron (1980) suggests the following bias correction for the percentile confidence interval
A
procedure (Ref. 11]. He argues that is Mp(t) is not the median of the bootstrap replication distri-
bution, then a bias correction to the percentile method is called for. To be specific, define
- o (¢ M|
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# of MY =t}
B

A . . . »
where C(1) = as in equation 3.7, and @ is the cumulative distribution function

function for a standard normal variate. The bias corrected percentile method consists of taking
[E10022-2)1, 007,420t | (-11)

A V -
as an approximate 1-2a central confidence interval for Mp(t). Here z, is the upper point for a

standard normal ®(z,) = 1-a

IV. Simulation Results

The purpose of the simulation in this chapter is toassess the performance of the nonparametric
estimation methods, the jackknife and the bootstrap. Since the estimate of M(t), the mean number
of customers being served at time t, is a function of the customer arrival rate and the integral of the
servivor function of the service time distribution, two simulation cases are done, The first simulation
case was performéd to estimate My(t), the nonparametric estimate of M(t), as a function of the
service times with the arrival rate assumed to be known and set equal to 1. The second case assumed
that the customer arrival rate is also unknown and must be estimated using interarrival times.

In each replication of the simulation for case 1, 50 independent service times from a specified
service time distribution were generated. For the bootstrap procedure, 500 bootstrap replications
were performed. The simulation was replicated 300 times. For the purpose of comparison, we
considered four types of service time distributions, which were the exponential, the mixed exponen-
tial, the gamma, the lognormal distribution. The arrival process is known to be poisson process with
known rate A = 1. The same generated service times were used for each estimation procedure in a
replication. This reduces the variability of the differences in performance between the procedures.

To illustrate the efficiency of the nonparametric estimation methods, we simulated two possible
ways to construct the approximate confidence interval for My(t) for the bootstrap and the jackknife
methods. For the jackknife estimation method, one procedure was to construct the confidence
interval with the regular degrees of freedom, n-1, and the other used the reduced degrees of freedom,
which is the number of different pseudo values. For the bootstrap estimation method, one way used
the percentile method by the Monte Carlo process, and the other used the bias-corrected percentile
method; there were 500 bootstrap replications. Nominal 68%, 80% and 90% confidence intervals
were constructed for each replication using each method. It was noted whether the confidence
interval formed by a given method covered the true value M(t). The entire process was independently
replicated with R = 300 times. From these R replications we computed, for each method, the pro-
portion p of the R confidence intervals which contained M(t), as well as the average length of the
confidence intervals. If a method was performing adequately, p should be near 1-a. and a small mean

length is desirable.
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Table I. Coverage and Length of 100(1-)% C.I for Exponential with u=2,A=1atT=1

68% 80% 90%

Length Length CR Length CR.
(s.d) CR 1 () R 69
0.0888 | 19.33 | 0.1147 | 12.00 | 0.1477 4.67
Normal C.1. 69.33 83.67 92.00
Procedure (0.0089) | 11.33 | (0.0101) | 433 | (0.0141) | 330
0.0911 | 17.67 | 0.1187 | 11.00 | 0.1548 333
R(fd;’ced 71.33 85.33 94.00
' (0.0089) | 11.00 | (0.0102) | 3.67 | (0.0142) | 2.67
Jackknife Regular 0.0897 | 1838 | 01163 | 11.33 | 0.1505 4.00

4 70.67 84.33 93.00
‘ (0.0090) | 11.00 | (0.0103) | 433 | (0.0144) | 3.00

0.0884 18.67 0.1132 | 12.00 0.1462 4.33
69.00 82.00 92.00
(0.0098) 12.33 (0.0112) 6.00 | (0.0154) 4.67

Percentile
method
Bootstrap

. 0.0887 16.67 0.1137 10.67 0.1467 2.67
Biascorrect

ot 71.00 83.00 92.67
me (0.0098) | 1233 | (0.0112) | 633 | (0.0154) | 4.67

In order to compare the performance of these procedures to the normal confidence interval
procedure, simulations were conducted, and nominal 68%, 80% and 90% confidence limits were
constructed for time t = 1 for each replication. By the central limit thorem, the distribution of

Mp(t) is asymtotically normal distributed as the number of data points n = Thus, the 100(1-a)%
normal confidence interval is given by

M) £ Z, o v/ Var[M{(0)] (1)
where Z; %is the upper l%point of the standard normal distribution.

Each cell in the tables contain the average and standard deviation of confidence interval length;
and the proportion of intervals that are too high, (e.g. M(t) < L), where L is the lower bound of
interval; the proportion of intervals covering the true value M(t), p; the proportion of interval are
too low, (e.g. M(t) < U), where U is the upper bound of interval.

The overall examination of the tabulations of confidence limit coverage and also the average
and standard deviation of confidence interval length suggest that the bootstrap procedure is shghtly
better than the jackknife procedure; however, the difference is negligible.
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Table I, Coverage and Length of 100(1-a)% C.I. for Mixed Exponential with u;, = 2, u, = .75,
P,=2,A=1atT=1.
68% 80% 90%
Length Length Length
o) CR. (o) C.R. s.0) CR.
Normal C.1 0.0914 | 14.67 0.1169 | 10.00 0.1509 5.00
Procedure 71.67 83.00 90.67
(0.0084) | 13.67 | (0.0102) 7.00 | (0.0143) 4.33
Reduced 0.0936 | 14.00 0.1208 9.67 0.1581 4.33
if 73.00 83.33 91.67
. . (0.0085) | 13.00 | (0.0103) 7.00 | (0.0143) 4.00
Jackknife ol 0.0923 | 1467 | 01185 | 1000 | 01538 | 433
eﬁufa‘ 72.00 83.00 91.33
. (0.0085) | 13.33 | (0.0103) 7.00 | (0.0145) 4.33
Percentile 0.0911 | 1433 0.1156 | 11.33 0.1490 4.33
method 71.67 81.33 89.67
Bootstrap (0.0094) | 14.00 | (0.0112) 7.33 | (0.0153) 433
Biascorree] 00913 | 14.00 0.1161 9.00 0.1495 4.00
method 71.00 83.00 89.67
(0.0094) | 15.00 | (0.0112) 8.00 | (0.0153) 6.33
Table ITI. Coverage and Length of 100(1-a)% C.I. for Gamma with §=1, K=2,A\=1at T=1
68% 80% 90%
Length Length Length
(s.d) CR. (o) CR. (s.d) C.R.
Normal CI 0.0595 | 22.00 0.0774 | 12.33 0.0989 | 10.67
Pr°‘"‘; - 68.33 80.33 86.33
ocecure (0.0100) | 967 | (0.0120) | 7.33 | (0.0174) | 3.00
Reduced 0.0617 | 21.00 0.0813 | 11.33 0.1062 8.33
€ d“f“ 70.00 82.67 89.00
: (0.0102) 9.00 | (0.0122); | 6.00 | (0.0178) 2.67
Jackkneife Resul 0.0601 | 21.67 | 0.0785 | 12.33 | 0.1008 | 10.33
eg“fa‘ 69.33 80.67 86.67
: (0.0102) 9.00 | (0.0121) 7.00 | (0.0177) 4.00
, 0.0589 | 21.33 0.0766 | 12.00 0.0981 9.33
Percentile 69.97 80.33 86.67
method (0.0091) 9.00 | (0.0122) 767 | (0.0179) 3.00
Bootstrap . 0.0595 | 1933 | 0.0777 | 1067 | 00990 | 8.67
Biascorrect 69.33 81.00 , 87.00
method (0.0100) | 11.33 | (0.0121) 8.33 | (0.0180) 4.33
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Table IV. Coverage and Length of 100(1-a)% C.I. for Lognormal with ¢ =.193, 3%2=1,A=1atT=1.

68% 80% 90%
Length Length Length
D C.R. o) CR. o0 CR.
0.0769 | 1667 | 01007 | 10.00 | 01272 | 6.67
Normal C.I. : 71.00 78.00 89.33
Procedure (0.0075) | 12.33 | (0.0096) | 12.00 | (0.0126) | 4.00
00787 | 1633 | 01208 | 967 | 01330 | 633
Reduced 71.33 | 79.67 89.67
. d. f (0.0076) | 12.33 | (0.0097) | 10.67 | (0.0127) | 4.00
Jackknife .
00763 | 1667 | 01021 | 1000 | 01297 | 6.67
Regular 70.33 79.00 |- 89.33
d.f (0.0076) | 13.00 | (0.0097) | 11.00 | (0.0128) | 4.00
Peccontile | 00763 | 1667 | 00998 | 1033 | 01258 | 7.33
| 69.33 77.00 88.67
. method 1 0.0084) | 1400 |(0.0105) | 1267 | 0.0133) | 5.00
Bootstrap
Bisscorrect | 0768 | 1600 | 01004 | 867 | 01263 | 6.33
68.33 78.33 88.67
method (0.0084) | 15.67 | (0.0106) | 13.00 | (0.0133) | 5.00

Although the method of the reduced degrees of freedom used in the jackknife and the bias-correct
percentile method applied in the bootstrap improved the coverage rate, the variance was inflated.
Furthermoré, the amount of improvement was small and not significant. Hence, the original proce-
dures for constructing the confidence interval for the jackknife and bootstrap are preferred in this
case. Note that the coverage rates are skewed left shghtly but almost balanced. It is a reason that
the normal confidence interval procedure performs well.

Results will now be reported for the simulation of the case in which the arrival rate of the -
Poisson process is also unknown and must be estimated from interarrival time data. More computa-
tions are required for this case; however, the procedure is same. Each replication of the simulation
generated 50 independent service times and 50 independent'exponential interarrival times having
mean 1. Confidence intervals were computed using both separated and paired jackknife procedures
and the percentile method for the bootstrap. The number of bootstrap réplications was 1000.

Nominal 80% confidence limits were computed for each replication. The simulation was replicated
300 times.
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Table V. Coverage and Length of 80% C.I. with Unknown Arrival Rate (N=50, R=300, B=1000).

Jackknife Bootstrap

Separated Paired Percentile
Length Length CR Length CR

(s.d) CR | T6d) R 6d)

0.3447 5.33 0.3282 8.00 0.3162 12.67
Exponential (4 =2) 79.67 82.00 83.00
(0.1329) 15.00 | (0.0641) 10.00 | (0.0585) 4.33
. 0.2558 0.2688 5.67 0.2553 12.67
Mixed expe e P =2 75.67 82.33 83.00
W=2, =T5P1=2) | 4 10gg) (0.0569) | 12.00 | (0.0490) | 433
0.3646 5.00 0.3504 6.67 0.3375 16.33
Gamma (=1, k=2) 78.67 81.67 75.67
(0.1509) | 19.33 | (0.0703) 11.67 | (0.0657) | 8.00
Lognormal 0.3259 4.67 0.3231 6.33 0.3115 14.67

(0.1279) | 16.67 | (0.0624) 1433 | (0.0585) | 10.00

The quantities in the left part of each cell are the average and standard deviation (with parenthesis)
of coverage interval length. The right part of each cell contains three quantities; the top value is the
proportion of intervals that are too high; the center value is the proportion of intervals that cover
the true value, f); and the bottom part is the proportion of intervals that are too low.

In Table V, the average length from the bootstrap shows outstanding performance with a small
value of standard deviation. The paired jackknife procedure performs as well as the bootstrap
procedure. This procedure reduced the standard deviation by more than half of that in the separated
jackknife procedure, and also improved the coverage rate. From the results of coverage rate in the
table, it can be recognized immediately that the jackknife estimate, regardless of the application
method, is often too low, while the bootstrap estimate tends may a little too high but is almost
balanced in the number of confidence intervals that are too high or too low. It is the reason that the

bias-corrected percentile method was not required in this case.

In this simulation, all the coverage rates fall within * 2 /—a-%)— of 1-a (75.38, 84.61). Note
that the average length of the confidence interval in the gamma service time case is the highest.
When the arrival rate was known, the gamma service time case had the smallest average length. This
indicates that the variability of the estimated arrival rate may be the dominate effect in the width
of the confidence interval. Obviously the paired jackknife procedure performs very well. The
bootstrap procedure still has the best performance; however the value of coverage rate fluctuates
greatly for the different service time distributions. The paired jackknife improved the coverage rate
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tremendously. Although the average lengths in the paired jackknife procedure are slightly bigger
than those in the bootstrap procedure, the overall performance is better than the bootstrap.

In general, all the confidence interval procedures performed very well for the exponential service
time case, regardless of the level of the confidence interval. In most cases, the average length pro-
duced by the bootstrap procedure is the smallest, but the value of the coverage rate fluctuates for
different service time distribution. The overall examination of the tabulations suggests that the
paired jackknife procedure performs very well compared to the separated jackknife procedure and in

some cases shows better performance than the bootstrap procedure.

V. Conclusion

In general, the nonparametric methods of the bootstrap and the jackknife performs very well,
regardless the complexing of the estimation problem. Of course, if the parameter estimation methods
can be applied, the results are clearly superior. However, the application of the parametric estimaton
is a highly limited because the parametric assumption is ofen difficult to verify. When the estimate
is simple enough, which is the nonparametric estimate when the arrival rate is known, and the asymp-
totic distribution of estimate can be obtained, the nonparametric normal confidence interval pro-
procedure performs well, and more complicate computations such as the jackknife and the boot-
strap method are not required. However, the jackknife and the bootstrap method have a good
performance for the more complicated problem in which the arrival rate is unknown. The bootstrap
confidence intervals show the best performance but the paired jackknife procedure achieve the same

level performance with less computation than the bootstrap in this problem.

-80_



References

10.

11.

12.

. Brown, M. and Ross S.M.

. Gross, D. and Harris, C.M., Fundamentals of

Queueing Theory, John Wiley and Sons,
1974.

“Some Results
for Infinite Server Queues”, J. Appl. Prob.,
6, pp. 604-611, 1969.

Takacs, L., Introduction to the Theory of

Queues, Oxford University Press, 1962.

. Cox, D.R., “Some Problems of Statistical

Analysis Connected with Congestion, Pro-
ceedings of the Symposium on Congestion
Theory, pp. 289-316, 1964.

. Mirasol, N.M., “The Output of an M/G

Queueing System is Poisson”, Opns. Res.,
11, pp. 282-284, 1963.

. Lewis, P.AW. and Uribe, L., “The New

Naval Postgraduate School Random Number
Package LLRANDOMII, NPS 55-81-005,
Monterey, California, 1981.

. Quenouille, M. H., “Notes an Bias in Estima-

tion”, Biometrika, 4, pp. 353-360, 1956.

. Tukey, J.W., “Bias and Confidence in Not

Quite Large Samples, Ann. Math. Statist.,
29, p. 614, 1958.

. Miller, R.G., “The Jackknife—a Review”,

Biometrika, 61, pp. 1-15, 1974,

Efron, B, “Bootstrap Methods: Another
Look at the Jackknife”, Ann. Statist., 7,
pp. 1-26, 1979.

Efron, B., The Jackknife, the Bootstrap, and
other Resampling Plans”, Technical Report
No. 63, Dept. of Statistics, Stanford Univer-
sity, 1980.

Feller, W. An Introduction to Probability
Theory and its Appiications, Vol. 2, New
York, Wiley, 1966.

13.

_81-

Efron, B., “Nonparametric Standard Errors
and Confidence Intervals”, Canadian Journal
of Statistics, 9, pp. 139-172, 1981.



