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Estimators Which Shrink Towards
a Point Other Than the Origin

Choi, An Jae*
Kim, Jai Young*

Abstract

In this study, estimators which shrink towards other than the crigin are developed.
We discuss the harmonic mean of the observations as a reasonable center and develop esti-
mators which shrink the MLE(8%) towards the harmonic mean under the loss function L,.
The percentage reduction of average loss(PRAL) of derived estimators compared to the
usual estimator(MLE) under the loss function L, is estimated for p=4 and 8. Computer
simulation shows that the risk performance of the derived estiamtors is remarkably good

when the means are greater than three.

I. Introduction

Estimators which shrink towards the origin are expected to be good when the underlying parame-
ters are small. The simulation study in Tsui and Press(1982) showed that the percentage of savings
in risk over the MLE is about 25%—30% when the parameter )\i’s are in the range of (0, 4) for p=3.

If some of the parameters are large very little improvement in risk over the MLE can be expected
by shrinking towards the origin. Shrinkage estimators tend to have good risk improvement only
near points to which they shrink. Thus if X is thought to be away from the origin, an estimator
shrinking towards the origin will not give good risk reduction. The choice of an appropriate prefixed

point or a point determined by data itself should remedy this problem.

* Korea Military Academy
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We consider the normalized loss function,

Ly -3 (6= WPIOYK, k=0,1,2,3,........

=1 _

A question arises whether there are estimators for the simultaneous estimation of Poisson means.

The Poisson means estimation has been much less extensively studied than the normal means
estimation. Only very recently, estimators dominating the MLE have been found which allow utiliza-
tion of a prefixed point. The ability to assess estimators which shrink towards a pre-determined point
is important. Tsui(1978), Tsui(1981), Tsui and Press(1982) and Ghosh, Hwang and Tsui(1983)
considered this problem. Tsui(1978) and Tsui and Hudson(1981) constructed estimators which
shift the MLE towards a prechosen point as well as points determined by data under the loss function
Lo. Under the loss function Ly(sqy Ghosh, Hwang and Tsui (1983) proposed better estimators
which shrink towards a prefixed pointq=(qy, . . . , qp), where the q;’s are nonnegative integrers.

Their estimators are defined componentwise as

(NEX-ke)- 1) + (%09 - (g0 +

8$1(%) = X~ :
' (st + (09 - (g1 () + m

th

where (1) i=1,..., p, and ¢;isvector whose i"" coordinate is one,

(2) NX)=#{i: X;>q; +k] , and (a), =max([a, 0],

@ =2 (%+10 0 - (gm0 Ky @

j#i

Better estimators for the loss functions Lk(>1) which shrink towards the minimum of the observa-

tion are defined componentwise as

(N(X-ke—1) , (X; (x) . K1)+ b )y 4
892 (X)=X; — 3
2 (04000 e 0 ®) 0 0680 gy 10 ®)
j#

where (1) i=1,...,p,

(2) NX)=#i: Xi> X(l) + k], and

(3) X(l) =min [X;].
The estimators proposed by Ghosh, Hwang and Tsui shift the MLE downward only, since a heavy
penalty is imposed for overestimating small parameters A; under the loss functions Lk(>1).

In a simulation study of Gosh, Hwang and Tsui (1983), q; is chosen to be the integrer part of A;

for the estimator 801 under Lo. But the risk performances of 8G1 are somewhat disappointing when
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the A;’s are large but close to one another. The risk performances of 502 are comparatively good
among dominating estimators when the )\i’s are close to one another (see Table 2, 3. Ghosh, Hwang
and Tsui (1983)).

A log transform is used for the Poisson data and the transformed data treated as approximately
normally distributed. Under the squared error loss funztion Lo, an estimator M which shifts the
MLE to the geometric mean of the observations is considered by Ghosh, Hwang and Tsui(1983).
We can see that 8™ for Poisson means estimation is similar to 8% for normal means estimation under
the loss function L. '

We focus on the estimation of Poisson parameters under the normalized .squared error loss
function L, . It is natural to find estimators:

(1) which shrink the usual estimator to a reasonable center, and

(2) which have good risk reduction when we have a correct prechosen point.

In Section 1I, estimators similar to BM which shrink towards a reasonable center
are derived under the loss function Ly. It is shown that the dervied estimator &’
dominates the MLE under the loss function Lk(>1) for P72, Mt >3, For p>3,
asymptotic dominance over the MLE is proved. We derive an estimator 5%(X) using
the component Xl.-h(X) instead of Xi’ where h(X) is tﬁe harmonic mean of observa-
tions, and =1, . . . ., p. The results of a computer simulation are described in Section
1Il. PRAL (percentage reduction of average loss) over the MLE is calculated and com-
pared, .

II. Estimators which Shrink towards the Harmonic Mean (Constructing the Estimators)

For simultaneous estimation of normal means, Lindley’s estimator 6L shrinks the
MLE towards the arithmetic mean of fhe observations. A similar estimator &M for
Poisson means estimation which shrinks the MLE thards the geometric mean under
the loss function'Lo is dervied by considering a log transformation. A natural question
is thus: Can similar estimétors be obtained for the loss function L;? Note that 6Z
shrinks the MLE towards the origin and 562 shrinks the MLE towards (X(1), . . . .
X(l))' To avoid the difficulty of the arbitrary origin, we derive an estimator which
shrinks towards the harmonic mean under the loss function L,.

Choosing the harmonic mean as a reasonable center is justified below:

(1) Consider a dominating estimator of the form (I-w(X) )X, under the loss tunction L, which
shrinks the MLE towards the origin. This estimator shrinks the MLE towards the point (0, . . .,

0). So we want to adjust this estimator by adding some function of X. Consider the estimator of

the form.
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8(X) = (1-w(X) ) X + ¢(X). 4)

(2) Then
2
c +.2c(Xi-in-)\i) |

R(5, )-REZ, N =E[ =

i=1 i

p p p
=E[c? T IA\+2c X X\ 2w Z Xi/)\i-2cp]
i=1 i=1 i=1
= E[A], (say). : )
Minimizing the expression A with respect to ¢ yields the optimal c as

p . p
p— —E XA+ W.E XN
c= i=1 i=1

©)

p
z 1/7\i
i=1

Although ¢ is a function of the unknown parameter A, it can be estimated using the observations
Xl’ ey Xp’ In particular, if )\1, c ey )‘p are estimated by their MLE’s, Xl’ ceee, Xp’ we obtain

P
w(p/ =X 1 ) as an estimator of c.
i=1

A better understanding of the structure of estimators under the loss function Lo and L, can be
obtained by investigating the structure of the Bayes estimator under Ly and L. Let Ay, ... ., )‘p
have the common conjugate prior density which is gammé(oz, B) with mean of, variance aff?, where

o0, f>0. Under the loss function Lo, the Bayes estimator is given by

85(X)= (- 1/B+ 1)) X + (1B 1)) of, i=L,..., p. Q)
Under the loss function L;, the Bayes Bayes estimator is given by

8P(X) = (1-1/B+ D)X + (1B + 1)) (@f-H) (@B~ B), 1=1,..., p. ®)

(7) and (8) indicate that the Bayes estimator shrinks the MLE towards off and (af-8) under Lo and
L,, respectively. If prior information about e, 8 is unknown we might consider estimating them from
data following an empirical Bayes approach. The structure of the Bayes estimator under Ly and L,
indicates that the point towards which the MLE is shifted under the loss function L, is less than the
point under the loss function Lo. This is another reason for choosing the harmonic mean as a reason-
able center under the loss function L;.

Using the harmonic mean as a reasonable center, we derive the estimator,
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P

i=1

4

X..

where w=(p—1)/(Z+p-1), z= i

i=1
Our next theorem shows that §' dominates the MLE under the loss function Ly, for p=2, A; +

Xz >3. To prove this we need the following lemma.

Lemma 1
Let Z~Poisson( A), then
Z-1)(Z-2 Z-DA
(z1@2) - (1) 1<0 for A>3, (10)
(Z+1) (Z+1)
Proof

7% - 37+2 = (22-3z+2)eMAZ

Z+1 z=0 (Z+ 1) !

=a/m 2 % —5y+6)e MY 1y!]
y =

(1/A) [A2+A—5A+6-6¢1]

A-4+6A16eANL, (11)

AE[2—= A T @-1eMZe
- = Zz—1)e z+ ..
Z+1 i=1

Let y=z+1, then

Al -3 2)e A
[Z+1] =5 y-2)e™

A2(-2N

A2+2e N, (12)

Let (11) be A(A) and ( 12 ) be B(A), respectively. Then, A(A)—B(A) = -2v+6A'l—2e'A-6e'A-6e'AA'l
< 0 for A>3, (actually for A>2.576).
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Theorem 2.

81 (X) given in (9) dominates the MLE under the loss function L; for p=2, A, + A, > 3.

Proof

Let D=R (8!, A\)~R(8¢, N) under the loss function L, .
Then

2
D = E| i§1 [w? (X;~h)* 2w (X;~h) (X.-2)I/N])
where h(X) = 2/( _%1 1/Xi), w=1/(Z+1).
12

We have

W2 (X 1 2 -—4X21 X2 /Z+4X% X% /Zz )——2W(X12—2X% X2 /Z)

D= Ef -
1

w2(X3-4X, X3/Z2+4X3X3 [22)—2w(X3 —2w(X} —2x, X3/Z)
+
Az

+ 2W(Xl—2XIX2 /Z)+2W(X2—‘2XIX2 /Z)] .

Note that

E[X1X2| Z] = E[X,~DX2+X;X, | Z],

and

BIXIX2 | 2] = E[X, (Xi~1)Xa(Xa—1) +X3Xo#X, XE-Xi X, | Z).

Let A=A;+A;and Bi=7\i/A, i=1, 2. Reparameterizing A as (A, 8),
we have 4 ' '
D = E[(A8,)! [w,(Z263 +Z6%— 7 (A(6,Z)0,+B(9, Z)6,+B(6,Z))
4
+w(z2 (A(9,Z)+B(9,2)+C06,2)))
—_2w(Z26% +20,-70%—(2/Z)A0, 2)9,)
+2WA(Z82-2AZ~1) 62 6,))
4
+HA0,) ! [(w?(2203+26,—263 , (0. 2)0:+8(6,2))

tw? (Z‘: (A(B,Z)+B(O,2)+C(6,2)))
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—2w(Z%03+20,—Z0%—(2/2)A(0, 2)0,)
+2WA(Z65—2(Z—1)0,03)1] (15)

where (1) A0, Z) = Z(Z—1)(Z-2)8, 0,,
(2) B@,Z) = Z(Z-1)0, 05, and
(3) CO,2) = Z(Z-1)(Z-2) (Z—3) 62 92 .

Note that
A@,2)+B(0,Z2) = Z(Z—1)* 6, 6,. (16)

Then

D=E[A L [w?(220, +2-78,—4 (D@, Z) —4(Z—~1)8,)

? ; (D@, Z) (Z-3)6, +(Z-1)? 8,))

—2w(Z?0,+Z-76,—2D(9, Z)-4(Z—1)8,)
w5 (D0,2)(Z-3)0,+(Z-1)" 0,)

—2W(Z20,+Z-70,-2D(0,Z)) +2wA(Z0,-2(Z—1)0,0,)]]

where D(@,Z) = (Z-1)(Z-2)6,0,, so that
D=E[A L{(w?=2w) (Z2+Z) +2wAZ+4w* (Z—1) (Z—1)/Z)—1)
" rw? ((4/Z) (Z—3)-8) DO, Z) + 8w(Z—1) (Z-2)—A 0,6, ]. (17)

Note that
(1) (4/Z) (Z-3)-8<0, |
(2) E[2(Z-1) (Z-2)—w(Z-1)A] < 0 (by Lemma 1), and
(3) 09,0, < 1/4.

Now,

D< E [A! [w?(Z2+Z+(4]Z) (Z- 1)*- 4(Z- 1))- 2w(Z2 +Z- ZA)] ]
(since E[-wZ? +wZA]<0)
< E[Al[w? (22 +z+_ (Z- 1)* - 4(Z- 1))-2wZ] ]|

= E[A) (-22-Z-4+4/7))(Z+1)? ]

<O0forz>1. | (18)
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The next theorem shows that the estimator §! also dJominates the MLE under

the loss functions Lk(> 2)

Theorem 3.

8! (X) dominates 8° under the loss functions Lk(> 1) for p=2, A>3.

Proof
Let D} =R(8", \)~R(8°, 1) under the loss L, . Using a method similar to that
of the proof in Theorem 2,
Dy = E[AK[(w?-2w) (22-Z) + 2wAZ) (£, (6)) + (w*- 2W)Z(f2 (0))
+4w? ((Z-1)* [Z) (2-1)) (£: ()
tw? (-4(Z-1) (2-2) (£ (6))
+w?* (4/Z) (Z-1) (Z- 3) (£5(0))
+aw(Z-1) (Z-2-A) (fa ()] ] - (19)
where (1) f; (0) =602k + g2k
(2) £ (9)=0i +g'"k
(3) f3(0)='()i'k02+01 057k
(4) f4 (6)=03%0,+0,0%%, ana

(5) fs (6) = 03% 03 +0% 03k

Note that fs (0) > f5 (8).
Then ,
D, < E[AK £, (0) [((w?-2w) (22~ 2w) (22~ Z)+¥2wAZ) (w?=-2w)Z(f: (6)/f, (0))
+4w? (2-1) (- 1/Z) (£ (0)/f (6))
+4w? (Z- 1) (Z- 2) (- 3/Z) (£ (6)/£: (9))
+aw(Z- 1) (Z-2-A) (£ (0)/f (0)]]. (20)
Note also that f,(8)/f, (8)> 2,

f3(0)/f1 (0)> 1, and
£4(6)/t: (6)> 20,6,.

- 113 —



Now we have the inequality,
D, < E[AR £, (0) [(w?-2w) (Z2- Z)+2wAZ + 2(w? - 2w)Z+4w? (Z- 1) (- 1/Z)
+4w? (Z-1) (Z-2) (-3/2) 6,0, + 8wW(Z-2) (Z-2-A)0,6,]] (21)
< 0 (by (17) in Theorem 2).

The next theorem gives the asymptotic result for the estimator §' (X) for p > 2

Theorem 4.

Let D;(A\) =R(8',2) - R(6Z, A) under loss L' and let A=nk;, k> 0,i=1, ...,

p- Then the asymptotic improvement of 6! over §° is

-1 2,42
lim D, (A) = - (-1)°p 22)
n—>oo p , P
(2 k)P 5 (1/k)
=1 =1
where ki’ =1, ..., p, are fixed.

Proof

D;(A) = E[iizzl [w?h? +2wh (X wX-2)] /A

p p
1=1 = =

where w=(p-1)/( £ X, +p-1), and h is the harmonic mean of the observations.
1___

LetY; = Xi/n, i=1,...,p, then
E[Y;]=k; and Var [Y;] = k./n.

So, Y - 'l\(‘ in probability or distribution.

We know

w = (p-1) / (Z+p-1)

__ (Y

X+(p-1)/p
-1
< (_P__)_/_E’ where X = g X:/p,

X =1 !

and h <X
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wh < (p-1)/p.

Note that
Therefore
p ) p
nw?h? I 1. < ((p-1)/p)* T 1/k.
i=1 ! i=1 !
and
P p p
2nw?’h T X/A. <2(p-1)/p)nw( T X;) T (IA)
1= r 1 i=1 J:l J
p
<2(E0iP) (1) 2 (11l

By bounded convergence theorem,

p p
E[n[w?h? £ 1/A-2w’h = (X./A:)]]
=1 ! =1 !

(1)’ p* (@D'p’
= ki)2 z l/ki (9> ki)2 z l/ki
(e-1)* p*
- (23)
p P
(Z k)* £ 1/
=1 ¥ =1
Need to show
p
2E[nwhi=21 (Xi/)\i_ 1} -0
p
or 2En(wh-w*h*) = (X ) _
n( ) iﬁl( D] - 0,
where w*, h* are w, h with A‘s replacing X’s.
Let
p-1 p
Fok) =(5 )G ) @4)
1/ki

> ko+(@Dn =
il ! i=1

1=

then n(wh-w*h*) = Fn(Y)-Fn(k).
Choose € so that the ball of radius € about k does not contain 0. Let B denote

the ball.
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On B, VF is bounded so
p . .
n(wh-w*h*) <K % (Yi'ki)2 , where K is a constant.
i=1

By Schw_éu'z’s inequality

p P
2 -
B E (VPR 3 (Yl - o
On B, n(wh-w*h*) < 2n(p-1)/p.
But n(Pr(Y B€)) -0. (by Markov inequality)

Therefore
(p-1)*p?
lim D; (A\)~ (25)
(2 k 2 T 1/
1=1 1=1

This result indicates that 8! has better risk performance than that of % (and necessarily than
that of §°) when A; =....=Ap, p>wandn - . p
In the estimator 8 (X), we use w(X)=(p-1)/ ( Z Xi+p-1) which is defined. for the estimator

i=1
82, Using the deviations Xi-h(X), i=l, ..., p, rather than X, in-the estimator 62, we derive the next

estimator,

P—1

where i=1, . . .., p. If the minimum observation X(1) is 0, then the estimator 6' 1 and 62 are the same
as the estimator 5.

The estimators ' and 82 shrink the MLE upward and downward. Even though the estimators
8! and 8% do not improve upon the MLE, their risk performance is substantially better under several

considered cases.

M. Simulation Results

The simulation result of Gosh, Hwang and Tsui(1983) shows that the estimator 5C2 which
shrinks the MLE towards the minimum of the Poisson observations has better risk reduction than
that of 8Z in almost all situations when the parameters are close to one anoiher. But the estimator
8Z which shrinks the MLE towards the origin has the merit that 8Z dominates the MLE under the
variety of loss functions Ly, k=2,3,. ..
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To provide justification for the proposed estimators 8! and 82, we performed the following
computer simulation. We proved that the estimator 8, dominates 8, under the various loss functions
for p=2, A >3. We want to compare the risk performances of § G2 and 6 and the risk performances
of 82 and 5'. Generated values of \ are described in tables 1 abd 2. The simulation results are de-
scribed in Table 3 and Tabel 4 for p=4 and p=8, respectively. We calculate the percentage reduction
of average loss(PRAL) over the MLE under the loss function L, .

From Tables 3 and 4, we see that the average PRAL is an increasing function of p, the number of
independent Poisson populations. Also, we see that the PRAL decreases as the range of the 7\i’s in-
crease. The proposed estimators 8' and 82 shrink the MLE towards the harmonic mean upward and
downward. So, if the )\i’s are small then 8! and 6% will not give an improved PRAL, since the struc-
ture of the loss function indicates that a heavy penalty is imposed for overestimating small para-

meters )\i.

Although, the estimator 8% does not dominate the MLE the simulation result indicates that
62 performs remarkably well when the )\i’s are close to one another as well as when the A;’s are re-
latively far apart, while the PRAL of 862 decreases as the size of the A/s increases. The number of
improved cases in loss over the estimator 862 of the estimator 52 is impressive when the A;’s are
bigger than 3. Comparing estimators 6Z and 81 which dominate the MLE under a variety of loss
functions Ly~ , we see that the risk performance of 8! is better than that of 8Z in almost all cases
when the ?\i’s are bigger than 3.

Table 1.
Generated Values of A for p=4

range of the generated values of A

parameters-

(©5) (1.2, 26, 3.2, 4.4)
(18,1.9,3.0,3.7)
(0.5, 1.4, 2.4, 3.8)

G, 8) (39,4.3,6.5,7.3)

(4.4,6.1,6.3,6.9)
(3.4,5.2,70,7.1)

6, 11) (6.6,7.5, 7.7, 10.9)
(6.5,8.6,9.5,10.1)
(6.2,6.9,0,10.5)

(6, 11) (9.3,10.1, 106, 6, 12.2)
(6.5,8.6,9.5,10.1)
(6.2,6.9,9.0, 10.5)

(0, 8) 0.8,1.4,22,1.3)
(1.3,2.8,3.7, 7.0)
(1.4,4.4,5.7,1.7)

G, 11) 6.9,7.3,7.7,9.9)
(5.0,5.3,5.38,8.5)
(3.2,8.2,9.7, 10.6)

(6, 14) 6.9,9.8,11.2,11.3)
(6.6,8.7, 10.7, 12.6)
(6.2,6.9, 11.1, 13.8)
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Table 2.

Generated Values of A for p=8

range of the generated values of A
parameters
(0.9, 1.4, 3.0, 3.0, 4.3, 4.7, 4.8, 4.9)

(0, 5) (0.4, 0.6, 1.0, 1.3, 1.9, 2.9, 3.2, 4.7)

(1.2,1.6,1.8,2.8,9.3,5.4, 4.4, 4.6)
(3.1,4.1,45,5.1,5.5,6.1,6.5)

(3,8) (3.2,3.3,4.2,55,6.4,68,7.2,7.4)
(3.2,4.2,5.6,6.5,6.6,6.6,6.9,7.6)

(6.6, 7.9, 8.4,8.7,8.8,8.9, 3,9.6, 10.8)

(6.11) (6.2,6.5,5.7,7,7.7,9.6, 9.8, 10.4, 10.6)
6.1,6.7,7.3, 16, 8.5, 9.3, 9.5, 10.5)

(9.4,9.8,10.1, 10.5, 11.6, 12.3, 12.8, 13.9)

9, 19) (10.2,10.4,10.7,11.7, 11.7, 12.7, 12.9, 13.7)
(9.1,9.2,10.7,11.6, 12.0, 13.4, 13.8, 13.9)
(1.8,3.6,3.7,4.6,6.3,6.9,7.6,7.7)

(0, 8) (1.8,3.0,43,54,59,6.0,7.1,8.0)

0.6, 1.9, 3.4, 7.6, 6.6, 6.7, 6.2, 7.9)
(4.3,4.5,48,65,6.7,7.2, 8.6, 10.7)

(3,11 (3.1, 3.4,4.5,5.1, 7.0, 8.8,10.1, 10.6)
(3.2,5.6,5.9, 76, 8.5, 8.7,9.9, 10.3)

(7.5, 8.1,8.5,8.0,9.5,9.6, 9.6, 10.5, 12.8)

(6, 14) (6.3,7.8,9.2,10.3, 11.4, 12.0, 12.0, 13.7)
(6.4,7.2,7.4,8.3,9.4, 12.8, 13.0, 13.8)

Table 3
PRAL over the MLE under L, for p=4
Range of the z
Parameters 5 562 3! 52
21 19 23 19 22 20 17 19 17 21 27 17
0, 5) @n (20 (18) (22)
10 11 11 16 19 16 14 15 14 2529 24
3.8 48)] (17) (14) (26)
577 14 15 14 11 11 11 25 25 24
6. 11) (6) (14) (1 (25)
635 15 14 13 988 26 25 22
9, 14) (5) (14) ® (24)
18 14 11 13 14 11 14 11 8 13 13 7
{0, 8) (14 (13) an an
8117 15 16 9 12 14 8 26 26 10
(3. 11) ® (14) (1 @n
376 12 12 10 999 22 20 16
6,149 * (1D &) (19)

t The first PRAL in each cell ia based on the first generated value in the Table 5, the second is based on the sccond
and the third is based on the third, respectively.
The parenthetical values are the averages for the three sample PRALSs in the cell.
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Table 4

PRAL over the MLE under L, for p=8

Range of the 7 G, ) 2
Parameters 6 0 5 8
18 29 21 23 28 28 17 28 22 20 28 26
(0, 5) (23) (26) (22) (29)
12 12 11 23 21 21 19 19 18 32 30 31
(3.8 (12) - (22) (19) (31)
898 21 20 20 14 15 15 34 32 33
(6,11) ¥ (20) (15) (33)
7 67 19 19 17 12 11 11 33 33 30
9, 14) (N (18) (an (32)
14 14 13 19 20 14 16 16 10 22 23 9
(0, 8) (14) (18) (14) (18)
1212 9 20 17 16 17 15 15 29 33 24
3,11 (an (18) (16) (25)
766 19 15 14 14 12 12 32 26 24
(6, 19) (6) (16) (13) - @27

+ The first PRAL in each cell ia based on the first generated value in the Table 6, the second is based on the second

and the third is based on the third, respectively.

The parenthetical values are the averages for the three sample PRALSs in the cell.

References

1. Albert, I. (1979). Robust Bayes Estima-
tion. Mimeograph Series. No. 79-9, Dept
of Stat, Purdue University.

2. Albert, J. (1981). Simultaneous Estima-
tion of Poisson Means. Journal of Multi-
variate Analysis, 11,400-417.

3. Albert, J. (1981). Pseudo-Bayes Estima-
tion of Multinominal Proportions. Com-
mun. in Statist, Theory and Methods
A 10(16), 1587-1611.

- 119 ~

Berger, J. (1977). Admissible minimax
estimation of normal mean with arbi
trary quadratic loss. Ann. of Statist. 4.
223-226.

. Berger, J. (1978). Generalized Blayes

estimation in multivariate problems. Ann.
of Statist. 6. 783-801.

Berger, J. (1979). Multivariate Estimation
with Nonsymmetric Loss Functions. In
optimizing Methods in Statistics, J.S.
Rustagi (Ed). Academic Press, New York.

. Berger, J. (1980). Statistical Decision




10.

11.

12.

13.

14.

15.

16.

17.

Theory. Springer-Verlag, New York.

Bock, J. (1975). Minimax estimators of

the Mean of Multivariate Normal Distri-
bution. Ann. of Statist. 3. 209-218.
Brown, L. (1975). Estimation with In-
completely Specified Loss Functions (the
case of several location parameters). J.
Amer. Statist. Assoc. 70.417-427.
Clevenson, M. and Zidek, J. (19795).
Simultaneous Estimation of the Means
of Independent Poisson Laws. J. Amer.
Statist. Assoc. 70,698-705.

S. and Hollan, P. (1973).
Simultaneous Estimation of Multinomial
Cell Probabilities. J. Amer. Statist. Assoc.
68. 683-691.

Ghosh, M. (1983). Estimation of Multiple

Feinberg,

Poisson Means: Bayes and Empirical
Béye& Statistics and Decisions. 1, 183-
195.

Ghosh, M., Hwang, J. K.

(1983). Construction of Improved Esti-

and Tsui,

mators in Multiparameter Estimation for
Discrete Exponential Families. Ann. of
Statist. 11,351-367.

Hodges, J. and Lehmann, E. (1951).
Some application of the Cramer-Rao
inequality. Proc. 2nd Berk. Symp. Math.
Statist. Prabab, 13-20.

Hudson, h. (1974). Empirical Bayes
Estimation. Technical Report, No. 58,
Dept. of Stat., Stanford University.
Hudson, H. (1978). A Natural Identity
for Exponential Families with Applica-
tions in Multiparameter Estimation. Ann.
of Statist. 6.473-484.

Hudson, H. and Tsui, K. (1981). Simul-

18.

19.

20.

21.

22.

23.

24.

25.

26.

— 120 —

taneous Poisson Estimators for a priori

Hypothesis about Means J. Amer.
Statist. Assoc. 76,182-187.
Hwang, J. (1982). Improving upon

Standard Estimators in Discrete Exponen-
tial Families with Applications to Poisson
and Negative Binomial Cases. Ann. of
Statist. 10,857-867.

James, W. and Stein, C. (1961). Estima-
tion with quadratic Loss. Proc. 4th Berc.
Symp. Math. Statist. Probab. 1. 361-379.
Univ. of California Press.

Johnson, B. (1971). On the Admissible
Estimators for Certain Fixed Sample
Binomial Problems. Ann. of Statist. 42,
1579-1587.

Lehman, E. (1983). Theory of Point
Estimation. Wiley, New York.
Lindley, D. (1962). Discussion of a paper

by Stein, C. J. of Royal Statistica
Society(B). 24,285-287.

Peng, J. (1975). Simultaneous Estimation
of the Parameters of Independent Poisson
Distributions. Technical Report, No. 78,
Dept. of Stat., Stanford University.

Stein, C. (1956). Inadmissibility of the
usual estimator of multivariate normal
distribution. Proc. 3rd Berc. Symp. Math.
Statist. Probab. 1. 197-206. Univ. of
Calfornia Press.

Stein, C. (1981). Estimation of the Means
of a Mulitivariate Ditribution. Ann. of
Statist. 9.1135-1151.

Tsui, K. (1978). Simultaneous Estimation
of Several Poisson Parameters under

Squared Error Loss. Technical Report



27.

No. 37, Dept. of Stat., Univ of California,
Riverside.

Tsui, K. (1981). Difference Inequalities
and Inadmissiblity of the Usual Estimator
in Multiparameter Estimation of Dis-

crete Exponential Families. Technical Re-

- 121 —

28.

port No. 653. Dept. of Stat., Univ. of
Wisconsin.

Tsui, K. amd Press, S. (1982) . Simul
taneous Estimation of Several Poisson
Parameters under K-nomalized Squared

Error Loss. Ann. of Statist. 10.93-100.



