Starch Phosphorylase and its Inhibitor from Sweet Potato Root

  • Chang, Tsung-Chain (Department of Agricultural Chemistry, National Taiwan University and Institute of Biological Chemistry, Academia Sinica) ;
  • Su, Jong-Ching (Department of Agricultural Chemistry, National Taiwan University and Institute of Biological Chemistry, Academia Sinica)
  • 발행 : 1986.06.30

초록

Based on a tracer study, starch phosphorylase was implicated as an agent in the starch synthesis in sweet potato roots. The enzyme was purified from the tissue as a cluster of isozymes with an average mw of 205K (fresh roots) or 159K (roots stored for 3 mon.). On SDS polyacrylamide gel electrophoresis, one large subunit of 98K mw and several small ones of 47${\sim}57K mw were observed. From the mw data and the results of peptide mapping and immunoelectrophoretic blotting using mono- and polyclonal antibodies, it was deduced that a large part of the large subunit was cleaved at the middle part of the peptide chain to give rise to the small subunits, and on storage, the enzyme molecules were further modified by proteolysis. During the course of phosphorylase purification, a proteinaceous inhibitor of the enzyme was isolated. It had a mw of 250K and was composed of 5 identical subunits of 51K mw. In the direction of starch synthesis, the inhibitor showed a noncompetitive kinetics with a Ki of $1.3{\times}10^{-6}\;M$. By immunohistochemical methods, both the enzyme and the inhibitor were located on the cell wall and amyloplast. Crossreacting materials of the inhibitor were present in spinach leaf, potato tuber and rice grain. These findings indicate the wide occurrence of the inhibitor and also imply its possible participation in regulating starch phosphorylase activity in vivo.

키워드