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{ABSTRACT )

In this paper, the basic philosophy and adapta-
tion rule of adaptive quantization are described.
By computer simulations, some properties of adap-
tive quantization for a first-order Gauss-Markov

process are considered.

I. INTRODUCTION

A logarithmic companding technique is known
to enhance the performance of a quantizer with an
input that has a large dynamic range [1]. A log-
quantizer is still time-invariant, however; and in
that sense, it is not the ideal device for quantiz-
ing nonstationary inputs.

Serveral schemes have been proposed for using
adaptive quantizers which track input signals
with variable dynamic range [2]{8]. These techni-
ques have been applied primarily to speech coding
systems for lower bit rates. In Ref. [2], an ad-
justable uniform quantizer dependent on observa-
tion of blocks of quantized samples is investigated.
In Ref. [3], a differential RCM coder in which the
adaptive quantizer is used together with a fixed
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first-order predictor in the feedback loop is con-
sidered. In Ref. [4], Jayant presents the results of
extensive computer simulations undertaken to
determine the multiplier coefficients which max-
imize various performance functionals. In Ref. [5],
theoretical aspects of the adaptive quantizer are
deeply discussed. In Ref. [6], a quantizer scheme
is described for situations in which the signal
power is unknown a prior but remains constant for
the duration of a communication. In Ref. [7], a
robust adaptive quantizer which dissipates the ef-
fects of transmission errors is described. It implies
imperfect, or sluggish adaptations that may slight-
ly diminish coder performance over error free
channel. In Ref. [8], an adaptive quantizer is view-
ed as one that estimates the variance of its input
and normalizes the input by the square root of the
estimate. In Ref. [9], the performance limits are
described for different speech-encoding schemes
including adaptive quantization and adaptive
prediction schemes. In Ref. [10], a mathematical
analysis of an adaptive quantizer is described.
Adaptive quantization has provided a better quan-
tization error performance than companded quan-

tization if the input is nonstationary.
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The basic principle of the adaptation is that in
each time interval the quantizer characteristic is
controlled by the input or output signal with the
aim of maintaining a constant loading factor [7].
Thus the quantizer range tends to track the
dynamic range of the input. An adaptive quantizer
can be viewed either as one with a variable range
of one that normalizes the input with a variable
and uses a fixed range [8]. The idea of the former
model is to adapt the quantizer step size to an in-
put value. The goal of the latter adaptation
strategy is to offer a unit level input to a fixed
quantizer.

A symmetric uniform quantizer and adaptation
rule are described in Section II. In Section III, the
bias function is defined and design rules are con-
sidered. In Section IV, by computer simulations of
a first-order Gauss-Markov input, some properties

of adaptive quantizer are discussed.

II. THE ADAPTIVE QUANTIZER

The symmetric uniform quantizer that we con-
sider is shown in Fig. 1.
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Fig. 1. Symmertric Uniform Quantizer.

For a nonnegative input, the output of the uniform
quantizer are of the form
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—(2].—1)4r
Y,=(2-1)3

where [, =k for (k-1) 4,= X, <k A,

By the symmetry, the response to negative inputs is
YA(X )= —Y.(-X,), for X,<0

The step size A, is scaled by a multiplicative

factor determined by the magnitude of previous

output level:

A = AMT)
In a quantizer with 2N output levesl, an output
of I,=1 suggests that the quantizer is probably
underloaded, and that A, should be decreased by
a factor M(1)< 1. Conversely, an output sample
of I, =N suggests that the quantizer may be
overloaded, and that A should be increased by a
factor M(N) < 1. It follows that the N multipliers
should satisfy [5])-[7].

M1)<1, M(N)>1
M1)=M2)=< ... =M(N)

IIT. THE BIAS FUNCTION AND
QUANTIZER DESIGN

As a measure of the stability, we define the
adaptation bias function [6].

Bly) =2 p.y)log M(i)

where pd{y) represents the probability of output
magnitude level i and hence the probability of us-
ing multiplier M(i)in the steady-state. It is assured
that all sets of properly ordered M(i)for which
> pily)log M({)=0 provide the desired static per-
formance [5].

Because @(y) is monotonically decreasing from
B(0)=log M(N) >0 to B(=)=log M(1)<0 and B(y) is
continuous, 3(y) has a unique zero crossing. The
adaptation algorithm may be viewed as an itera-
tive procedure for finding this zero crossing [6].

Clearly there is an infinite number of such sets.
Hence we can say that the static range depends
on the N-1 ratio, log M(i)/log M(N). The multiplier
magnitudes determine adaptation speed [5].



IV. COMPUTER SIMULATIONS

Using the same method as Jayant’s [4], some
properties of adaptive quantizer are investigated.

1. Inputs and Performance Criterion

QOur simulation have employed a first-order
Gauss-Markov sequence as quantizer input. It is
generated by the recursive rule

Xr=CXeatV1—C Nr; Xo=0, =)
where the samples N, are drawn from a zero-
mean, unit variance, white Gaussian sequence.

The quantizer output is the output level nearest
to the input X,

v.—(e| £ +1)2) sigx., Er<am

%’2 281 .....(8)

A .
=((2”—1}?) ) sigX.,
where [.] stands for “greatest integer in.”

The quantization error E=Y-X

A conventional performance measure is the
signal-to-quantization error ratio (SNR)

3P ¢ A

SNR(N, A smpr) =

-+ (10)

bifort
In adaptive quantization, a suitable multiplier
function for a given signal should provide a com-
promise between quickness of response and steady-
state performance. We define an average perfor-
mance index
SNR we= 2]_0 22 23 SNRIN, A R T (11)

N & START

for values of N=10, 100, 500, 1000, and

1

|1
ARTANT o 10" ‘/1—0'
where A opr=0.9957 for B=2, aopr=0.5860 for
B=3 (1) [1]

2. Multiplier Functions for B=2, C=0
Table 1 illustrates the nature of the SNR func-

1, V10, 10 |Agpr.
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tion (10) for two multiplier functions in B=2.
<Table 1> SNR (dB) for B=2, C=0

Value of N
iOlogT 10 100 500 1000
(T) M(1)=0.90 M(2)=1.20
20 1.66 6.39  7.92 8.04
-10 3.23 746 155 8.00
0 13.03 931 823 8.36
10 455 787 836 8.45
20 |-1276 072 4.90 6.16
M(1)=0.98 M(2)=1.04
-20 1.31 420 748 8.15
-10 3.99 6.84 8.61 8.91
0 845 764 867 8.87
10 2.34 632 821 8.39
20 984  -4.42 1.06 3.68

The first multiplier function shows faster response
(better SNR values for N=10 or 100), while the se-
cond function achieves a better asymptotic value
of SNR (at N=1000). Obviously, the poor asymp-
totic performance of the first one is due to overly
abrupt step-size oscillations in the steady-state,
while the inferior performance of the second one
for small N is due to sluggish adaptations of A
when A gpapr is suboptimal [4].

<Table 2> Comparison of Multiplier Function
(B=2, C=0)

M) M©@) | SNR,y(dB)|TT, M(i)*
0.71 2.00 5.36 0.999
0.80 1.60 5.77 1.006
0.90 1.20 5.80 0.990
0.95 1.10 5.51 0.997
0.98 1.04 4.94 0.999
0.95 1.20 4.61 1.026
0.50 2.00 447 0.790
0.90 1.10 5.28 0.962

Table 2 compares several multipliers for a 2-bit
quantizer on the basis of (11). The first five func-
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tions satisfy %pﬂogM(ihO, where P,=0.67 and
P,=0.33 [1].

3. Multiplier Functions for B=3, C=0
Table 3 shows the nature of the SNR function
(10) for B=3 and a specific multiplier function.

<Table 3> SNR(dB) for M(1)=0.90, M(2) =0.90,
M(3)=1.25,MM4=1.75 (B=3, C=0)

20log Value of N
AR A

(5= | 10 100 500 1000
20 |112 122 129 124
10 |e91 129 121 127
0 | 144 183 138 127
10 |920 124 128 128
20 |493 612 102 114

Table 4 uses the performance criterion (11). The
first three functions satisfy a stability constraint,
where p,=047, p,=0.30, p;=0.14, p,=0.09 [1].
Notice that the reduction of the number of distinct
step-size multipliers leads to a marginal decrease
of SNR vz [4].

<Table 4> Comparison of Multiplier Function

(B=3, C=0)

M1) M@ M@ M@)|SNRyx@B)TTM(i)"
090 090 125 175 11.02 | 1.0005
090 1.00 1.00 1.75| 11.01 | 1.0008
050 1.00 1.00 2.00| 827 | 0.7684
0.30 090 150 2.10| 598 | 0.6225

4. Comparison of Adaptive and
Nonadaptive Quantizers
Table 5 summarizes the nature of optimal
multiplier functions for B=2 and B=3. These func-
tions are obtained from [11].
Although the quantizer problem for C=0.5 is
qualitatively similar to that for C=0.99, we note
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<Table 5> Quantization of Gauss-

Markov Inputs

B C 0.00 0.50 0.99

SNRy, 9.30 9.30 9.30

2 SNR, 5.80 6.23 6.87

M(1) 0.90 0.90 0.50

M(2) 1.20 1.20 2.00

SNRy, 14.62 14.62 14.62

SNR, 11.02 1052 1295

3 M(1) 0.90 0.90 0.30

M(2) 0.90 0.90 0.90

M(3) 1.25 1.25 1.50

M(4) 1.75 1.75 2.10

* SNRy, stands for SNR of the nonadaptive
optimun quantizer [11], [12].
** SNR, stands for SNR of an adaptive
quantizer.

that results for C=0.5 are nearly identical with
those for C=0. The SNR gain resulting from adap-
tation is seen to be negative. The reason for using
an adaptive quantizer in these situations is only
to facilitate quantizations with much less
knowledge of the input. In other words, step-size
adaptations increase the dynamic range of the
quantizer and enable it to handle to inputs with
large amplitude variations, such as nonstationary
signals.

Notice that step-size increases are always faster
than step-size decrease. The need for fast increases
of step-size and slow decrease may be physically
explained as follows [4]. Quantization errors dur-
ing overload tend to be more harmful than those
during granulity, since the magnitude of granular
error is restricted to half step-size, while no such
constraint exist for an overload error. It is
therefore reasonable to decrease step-size slowly
to avoid unduly small step-sized leading to the
harmful overload errors.

V. CONCLUDING REMARKS
We considered a quantizer which adapts its step-




size by a factor depending only on the knowledge
of the previous quantizer output level. Adaptation
rule and design function are described. By com-
puter simulations, we know that Mgpy has the
property of calling for fast increases and slow
decreases of step-size.
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