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ABSTRACT

A replacement policy for a system subject to shocks where each shock increases the running
cost is considered. The shocks arrive to the system according to a nonhomogeneous Poisson process.
Optimal replacement policy to minimize the long-run expected cost rate is obtained and some numerical
examples are given,

1. Introduction

We consider a system subject to shocks, where each shock reduces the effectiveness of the system
and makes it more expensive to run the system, The word shock in this paper has broad interpreta-
tions. In some situations, the intensity rate of shocks may increase with the age of the system. For
example, consider a large system composed of many components where a shock is interpreted as the
failure of one of the components. Although the system continues to operate after a shock, it does
so under more stress due to increased loading of the other components and is therefore more susceptible
to shocks.

Replacement policies for systems subject to shocks are usually based on the cumulative damage
level. Taylor (1975) derived an optimal replacement policy for a system where shocks occur in accor-
dance with a Poisson process. Each shock causes a random amount of damage, the damage accum i-
lates additively and the accumuluted damage is observable. Zuckerman (1978) considered a failu-e
model where the shock process is an increasing one with stationary independent increments. Attia a1d
Brockwell(1984) studied an optimal replacement policy with continuously varying observable shocks.

On the other hand, Boland and Proschan (1983) studied the shock process in view of the costs and
proposed the periodic replacement policy when the running cost of the system increases with the
number of shocks arrived.
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In this paper, we perform a cost analysis on a system subject to shocks. Our approach is similar
to that of Boland and Proschan (1983). We assume that the nomral running cost of the new system
is ¢ units per unit time, and that each shock to the system increases the running cost by ¢ unit per
unit time. The cost of replacing the whole system is ¢o(¢q>> ¢;). The system is replaced at the first
shock after age 7 which is assumed to be abservable. We attempt to find the value of 7" that minimizes
the long-run expected cost per unit time.

Let #(¢) denote the intensity rate at which the system of age t is subject to shocks. We assume that
r({) is a continuous positive function for £ > 0. Let R(¢) = [§7(s) dsdenote the mean value
function. We assume that the number of shocks arriving in the age interval [0, ¢] of the system follows
a nonhomogeneous Poisson process with the intensity function r(?).

2. Analysis

Let N(¢) be the number of shocks arrived in the age interval [0, ¢] and V,, ¢ >, denote the
time at which the 7 ‘#shock occurred. Suppose that the system is subject to # shocks during tne
interval [0, 7]. Then the running cost in the interval [U, ¥ ,,,] is
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This leads us to the following lemma,
Lemma 1. The conditional expected cost of running the system until the replacement of the system
given {N(T) = k} is

(eterk)M(T)+ ¢T 4+ ek JER(s)ds/ R(T),
for k =0,1, -,

where M(T) =[5 (1-F(z)})dz/(1—F (7)) (meanresidual life function) and F(?¢) = 1--exp

Proof. First note that E(Yneryn ~TIN(T)=Fk) = M(T) (see Muth (1977)).

For fixed &, let Zz;, =r(Yy,;) for £=1,2,..., k, Since the shock process is a nonhomogeneous
Poisson process with intensite rate r(¢), we know that given & shocks in the interval [(,7), the random
variables Z;, . . . ,and Z, are distributed as the order statistics in the sample of size # from the uniform
distribution on [0, R(T)]. (See Parzen (19672).) Hence the conditional expected running cost during
the interval [0, Yy.r,,1] given {‘\N(T) = k} is

k
E((Cetci)Yy(T)+1 —e1 Y, Y, IN(T) = k)
1
3
=(Cct+ec B)Y(TH+M(T) - ¢, Z;E(R_](Z;))

=(c+ e A)(THM(T) — ¢ kE(RT1(2))

(where Z is uniformly distributed on [0, R(T)])

=(Ce+c1k)(THM(T)) —c kfhtr(t) dt/R(T)



=(ct+c1b)M(T) + cTHc 1 kfER(E) At/ R(T).

Theorem 1. The expected cost rate when it is subject to shocks of intensity rate »(¢) is

c(T)=c+Cecy M(TYR(T)+ g R(s)ds)+ ¢ )/ (TH+M(T)).

Proof. Lemma 1 makes it possible to calculate the expected running cost in the interval [,y (r et

S (e (THM(T)) + e kM(T) + cr kST R(s)ds/ R(CT)) R*(T)e *<O sk o
k=0
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cCTHMT)) + ¢ (M(T) + 5 R(s)ds/R(T)) R(T)

Il

e(TAM(T)) +e i (M(TYR(T) + S R(s)ds).
Hence, from the renewal reward theorem, the expected cost rate is
CCT) =Ce(THM(T))+er(M(T)R(T) +fa R(s)ds) + ¢co )/ (T+M(T)),
since the expected duration of a replacement intervalis T +M( T) .
We seek the optimal value of 7 *7.e. the value of 7 minimizing C (7r).
Theorem 2. Let H(T) =T +M(T)+TR(T) ~ i R(s)ds. Thenif there exists a solution o
satisfying #7(7%) = €o/ey, it is the unique optimal solution. Otherwise, the optimal solationis 7" = 0
if e c1 and T =00 if w#< ¢/ c1 and lim H(T) { co/ ¢y, where w=[501
. . T w
—-F(t))de,
Proof. First notethat M (¢) =M(T)»(T)—1. Hence,
C (D) =Ly (M (T)R(T) + r (TIM(T)+R(T)) (T+M(T))
= (1 +M(T))(ery M(T) R(T)+ S0 R(s)ds+¢o)]/(T+M(T))?

“=MCT) 7 (T) Lea (THM(T)+TR(T) = [L R(s)ds—cy )/ (T+M(T))*

il

MCT) 7 (T) Cer H(T) = co)/(T+M(T))?

Since H'(T) = 1+M (T)+R(T)+Tr(T)—R(T)=r (TY(T+M(T)) > 0,

we know
that #(T) isa strictly increasing function of T.

Hence if there exists a solution T'* satisfying

H(T* ) = ¢y c1, itisthe unique optimal solution. In fact, such a solution exists if u<cgle

and lim A (T) > ¢y ¢y since lirr(l) H(T) =M(0) = pu. The remaining part of the proof then
o
easily follows.

We observe that the solution 7 is a function of the cost ratio ¢o/c 1 and not the individual values.
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3. Examples

We now illustrate an example with an exponentially decreasing mean residual life function. This
model was introduced by Muth(1977): it represents the case of strictly positive memory and has the
advantage of being analytically tractable. Assume
that

r(t)=aexp(Bt)-B, 0{(fa.
Then we have
R(t) = a((exp(Bt) —1)/8—-8t¢.
Hence, we get
M(T) = exp(=8T)/a,
and
H(T) =€ (ap T—-1)/B*+ e’ /a—~BT? /2+T+a/B2.

The equation H(T) = co/c, cannow be solved by numerical methods. The following table

contains the optimal value, T*, for some valuesof o and c¢g4/cy with 8 = /2.

Table 1. Optimal Valueof T

oo « 0.5 1
5 7.745 1.928
10 8.122 2.645
20 8.711 3.399
50 9.871 4.476
100 11.040 5.357

Table 2. Cost Comparison between Policy A and Policy B

o 0.5 1
Co Policy A Policy B Policy A Policy B
5 4.025 4.327 3.279 3.350
10 4,937 5.192 5.182 5.223
20 6.574 6.772 8.242 8.266
50 10.725 10.851 15.512 15.523
100 16.521 16.605 25.443 25.448

From the table, the optimal value of T, T*. increases with ¢o/cy. This is from the fact the f

a finite solution exists for the equation H(T) = c¢g/c,;, the solution should increase with ¢¢/c,
since /#(7T) is a strictly increasing functionof T'.
We now compare the proposed replacement policy (Policy A) with that of Boland and Proschan

(Policy A, 1983), in which replacement is made at age 7, Without loss of generality, we assume thet
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¢=0and c;=1. Table2 summarizes the results.
From Table 2, we can see that the proposed policy is superior to that of Boland and Proschan
(1983) in this example.

4. Remarks

A replacement policy for a system subject to shocks is proposed where each shock to the system
increases the running cost. The proposed policy seems to be superior to that of Boland and Proschan,
the proof of which is not given here. It will be interesting to extend these results to a case where there
exist many types of shocks.
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