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ON THE INTEGRAL PROPERTIES OF CLASSICAL SOLUTIONS
OF A PARABOLIC EQUATION

By M.I. Hassan

1. Introduetion

Questions of classical and weak solutions and their regularity of linear second-
order paratolic eguations with different boundary conditions are extentively
studied in [1], [2], [3], ete. It is well known that a situation can arise, in
which the first mixed boundary problem for such an equation has a classical
solution, but does not have a weak one. The classical solution is, at the same
time, a weak one if it is subject to additional conditions of integral or
differential character. We aim at investigating the conditions that must be
imposed on the known functions of the problem, that is, the coefficients,
right-hand side and the functions defining the initial and boundary conditions,
in order that a classical solution of the problem has square integrable derivatives
with respect to space and time variables. No conditions will be imposed on
the lateral surface of the region. We note that similar ideas for the case of
elliptic equations were considered in [4], [5] and [6].

In the Euclidean space R*"' of points (z, t)=(z, * z, t) we consider the
cylinderical region Q=Gx (0, T) of height T >0, where G is a bounded or
unbounded region in R” with boundary 9G. Let S=3Gx (0, T) and G ={(z, ?)
eQ : t=c}.

Throughout this paper, we shall employ usual notation for spaces of continuous
and continuously differentiable functions and for Sobolev spaces [2]. V"%(Q)
denotes the Banach space of all functions in WI’U(Q), which are continuous

with respect to ¢ in the L*(G)-norm, that is, };m% llatz, £+ —u(z, Ol 2., =0,
and such that

“”“VW(Q) =021EZXT ““(-T, t)”Lz(G) +”Du| lL’(Q)<OG’

n
where D=(D,, -+, D,) and D,=0/0z;, i=1, -, n, and |Du|2='_§llD‘.u‘;2.

In Q consider the differential operator L defined by
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Lu:Dtu——D‘.(a‘.J.DJ.u)+a‘.D‘.u+au,
where D,=0d/dt and summation convention is understood. All coefficients of L
are assumed to ke continuous functions in Q, and L is strictly parabolic in Q,
that is,

v1§1°<a, £,€.<ul€l®, v, p=const>0, e

for any real ¢&R” and all (z, #)EQ.
From here and on, u(z, ¢) will denote a classical solution from the space
c*' (@) nc(Q) of the problem
Lu=f(z, t) in Q,
ul,_,=g(z), ul,=0,
where f&C(Q) and g=C(G). Clearly, u=L*(Q) in case of bounded Q. If Q is
unbounded, we have uELz[G‘x(O, T)] for any G'CCG.

(2)

2. Integrability of Du on interior cylinders of height T'
In this section we prove the following auxiliary result.

LEMMA 1. Let the operator L be strictly parabolic in Q and have coefficients
a; asL”(Q), and let fELz(Q). If problem (2) has a classical solution u, then
for any subregion G'CCG, we have uEVl'O(Q'), where Q'=G X (0, T).

PROOF. Let g(z)=C'(G) be a cut-off function with compact support in G
and such that 0=¢=1 and ¢=1 on G’. Multiply both sides of the equation
Lu=f by ¢'u and integrate the result over the cylinder ch ,=GX(2), 2,),
where 0<{¢ <¢,<T. Properties of ¢ and u enable us to apply the formula of

integration by parts to obtain
—%— G qzugde—%— & q2u2d3:+ er ) [az.ijuDs.(qzu)+a!.q2uD‘.u
-i-J:thZMZJa's:d.t=‘];?'l._.z quudxdt.
. 1
Using (1), Cauchy inequalities !ablgeaz—r-(l/zle)l;u‘e and lal.jo:'.ﬁjl g(a'.ja‘aj.)f
1

(a‘.jﬁ!.ﬁjﬁ. and Schwarz inequality, we obtain

1 2 2 2 5 1 g o

Tfo‘z T dx+(u_£1-52) j;-h,.:g ¢ (D] dxdtg_z— Luq 4éw
1 242 2 2 2 1

+T-/;’L-‘qu dxdt+ 251‘];“-:; |Dq[ & dxdt+[7+sgp (a

1l ¢ 2 2 2
-+ i, El a;) j;’ q udzdt.

N



On the Integral Properties of Classical Solutions of a Parabolic Equation 163

Choosing ¢, and ¢, sufficiently small such that v—& —e,>>0, and passing to the
limit as z,—0 in this inequality, we get

2 2 = 2.2, .22, 2 j
fQMq | Dul “dzde=<C( [, la*f*+q"u’+| Da|*u*]dwds+ fG g8’ dz) <oo,
where C depends only on v, g and the coefficients of L, and is independent

of ¢,. Hence, q|Du| €L*(Q), which together with the fact that «=C(Q’),
completes the proof of the lemma.

3. Main result

Let G,,, m=1,2,-, be a sequence of subregions of G, for which G, CCG

+1?

9G,, are sufficiently smooth and lim G, =G. Since u=C(Q) and #=0 on §,

M—r0

we can, in the case of bounded G, choose these G, in such a way that
el <L for all (z, HE(G\G,} %[0, T1. (3)
The fulfilment of (3) in the case of unbounded G may be achieved by addition-

ally assuming that
lim «(z, £)=0 and u=L*(Q). (4)

| x| =0
In the cylinder Q =G, x(0, T ), whose lateral surface we denote by S,
consider the problem
Lu,=fin Q_,
u l,_g=h, (2)g: g =0 )
m't=0 m > “m'Sa ’
1 = . 5
where £, €C (G), 0=h =1, h,=1 on G, _ and supp 4, CCG, . If such u,
exists, we denote by u, its extension to the whole Q, which is equal to zero
in Q\Q,,-
LEMMA 2. Let us assume in addition to the hypotheses of lemma 1, that
o T * <
gEWI(G) andﬁ) ess Sgp\Dta!.j‘,dtQJo. Then umEWl’l(Q) and there is a subse-

quence of {u;jcweakly converging in the metric of W"°(Q) to a weak solution u
in IX/'I‘U(Q) of problem (2). Moreover,
where C is independent of f and g.

PROOF. Properties of & and g imply kmgevf/l(Gm). In view of this and our
conditions on the coefficients and f, it follows from the well known existence
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theorem for parabolic equations; cf [2, Ch.III], that problem (5) possess a
weak solution zzmeﬁ/l"(Qm). This solution is understood to be a function

amel-if’l’l(Q ) satisfying the initial condition in (5) and the integral identity

j; (vDu, +a,.Dau Dv+ avDu +au u)dxdt—j;. Svdzdt

1] 1 m i
for any W ’(Qm). In this identity set v=u_e u, where % is a positive
constant to be determined later. Using (1), integration by parts and Cauchy
inequality, we get

e [ ]Dumlzdzdt+(—§¥n'ﬁigf a5 sup ;Z:,'!a —3) Jor

1 2 ; 2
<y Jo L ldar+ L [ Kgldn.
Choosing % sufficiently large such that

ek u,?';,dxdt

k +inf a—-“l— sup ‘; i 1 >0
27 v gt 2
and recalling the properties of h,, we have from last inequality
Jo. (1D, +u2)dzat<C U F1iEy g+ 18I )
where C is independent of m, which shows that
e .00y SC LA 120y + Ml 2y ) <Ko (7
with K independent of m. Hence, there is a subsequence of {u;] weakly

converging in the metric of W""(Q) to some function «" in W"°(Q). Properties
of k,, and (3) imply

|h,8—g|=(1=h,)Ig| <—1— for all 2&G.

Thus, the traces kg of a; on G, uniformly converge to g in Go' Hence,
u‘lt=0:g. By elementary considerations, we may show that # is a weak
solution of problem (2) in the class 1fa’1’°(Q).

Now, we formulate and prove our main result.

THEOREM. Let all the hypotheses of lemma 2 be satisfied. Lf problem (2) has
a classical solution u, which in case of unbounded G satisfies the extra conditions
(4), then ueﬁ/l’l(Q) and, hence, coincides with the weak solution of problem (2)

in W"1(Q).

PROOF. In Q,, consider the problem



On the Integral Properties of Classical Solutions of a Parabolic Equation 165

Lw, +pw, =f+pu in Q,,
t=0:hmg’ wm‘S.zo’

where p is some fixed number, for which p+i3f a>0. By lemma 2, we have

wmI

wmeﬁfl’](Qm) and there is a subsequence of !w;} weakly converging in the

metric of W"%(Q) to the weak solution u of problem (2). Since, under our
assumptions, a solution in w"%Q) is also a solution in wh'(Q), we have
u eW"I(Q). Without loss of generality, we can assume that the sequence
{w;i itself weakly converges in W %(Q)-metric to “.
Lemma 1 and properties of w_ imply that u—w, is a weak solution in V]‘O(Qm)

of the problem

Lvm+pvm:0 in Qm,

vmlt=0:(1“hm)g’ vaS.:uS.'
Taking into consideration our conditions concerning the coefficients of L and

the fact that p+a>0 in Q, we may apply the maximum principle for solutions
of parabolic equations, as stated in theorem 7.2 in [2, Ch. 1II], to obtain in

view of (3) that

1
- < _ i
lu wm|_,s_§;u£“|u W
almost everywhere (a.e.) in Q_, where G mﬂz!(.r, t) : z€G,, t=0}. This
inequality, together with (3), shows that

| <

i -
u—w_|< a.e. in Q.
I m = om—1 Q

Hence, w:n uniformly converges to # a.e. in Q. But we showed above that the

same sequence weakly converges in w"%(Q)-metric to «, so we must have
u=u a.e. in Q. Therefore, u is the weak solution in 1l«"ll/]”(Q) of problem (2)

and the proof is complete.
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