Kyungpook Math. J.
Volume 25, Number 2
December, 1985

ISOMETRIC IMMERSION INTO A HYPERBOLIC SPACE

By M. A. Beltagy and M. Swealam

1. Introduction

In this work we discuss the problem of isometric immersion $x: M \rightarrow H^{n+N}$ of a compact, connected, oriented n-dimensional C^{∞} Riemannian manifold M into the $(n+N)$-dimensional hyperbolic space H^{n+N}. The same problem has been studied in the $(n+N)$-Euclidean space E^{n+N} [3] and also in the unit $(n+N)$ dimensional sphere S^{n+N} [1] as ambient spaces ($n \geq 2, N \geq 1$).

Let $B(M)$ be the bundle of unit normal vectors to $x(M)$, i.e., a point of $B(M)$ is a pair $(p, \nu(p))$, where $\nu(p)$ is a unit normal vector to $x(M)$ at $x(p)$.

Actually, in [3] and [1] the following two theorems have been proved.
THEOREM 1 [3]. Assume all second quadratic forms of the immersion $x: M \rightarrow E^{n+N}$ to be semi-definite and definite at one point $(p, \nu(p)) \in B(M)$. Then $x(M)$ belongs to a linear subvariety E^{n+1} of E^{n+N} and x imbeds M as the boundary of a convex body; in particular M is homeomorphic to a sphere.

THEOREM 2 [1]. Let $x: M \rightarrow H_{s}^{n+N}$ be a locally convex isometric immersion of a compact, connected, oriented, n-dimensional C^{∞} Riemannian manifold M into the open hemisphere $H_{s}^{n+N} \subset S^{n+N}$. Then $x(M)$ belongs to a totally geodesic sphere $S^{n+1} \subset S^{n+N}$ and x imbeds M as the boundary of a convex body of $S^{n+1} . M$ is homeomorphic to a sphere.

The aim of this paper is to prove the following theorem:
THEOREM 3. Consider $x: M \rightarrow H^{n+N}$ to be a locally convex isometric immersion of a compact, connected, oriented n-dimensional C^{∞} Riemannian manifold M then $x(M)$ belongs to an $(n+1)$-totally geodesic submanifold H^{n+1} of H^{n+N} and x imbeds M as the boundary of a convex body of $H^{n+1} . M$ is homeomorphic to a sphere.

Aming to our study we give some definitions and basic materials in the following section.

2. Basic materials

i) Convex bodies

A subset B in a Riemannian manifold M is called convex if for each pair of points $p, q \in B$, there is a unique minimal geodesic segment from p to q and this segment is in B. An open (closed) convex set which is a submanifold of M of maximal dimension is called open (closed) convex body.
ii) Convex submanifolds

Let M be a submanifold of a Riemannian manifold \bar{M}. We say that M is convex at the point $p \in M$ in the direction of ν where $\nu \in M_{p}^{\perp}-M_{p}$ means the tangent space of M at $p \in M$ (or simply M is convex at the point $(p, \nu) \in B(M)$) if there is a neighbourhood of p in M which lies on one side of the geodesic hypersurface of \bar{M} at p generated by the hyperplane W of \bar{M}_{p} with ν as its unit normal. We denote such a hypersurface by $H(p, \nu)=\exp _{p} W$.

The submanifold M will be called convex at the point $p \in M$ if it is convex at each point $(p, \nu) \in B(M)$ in the fiber over $p . \quad M$ is locally convex if it is convex at each point $(p, \nu) \in B(M)$ in the normal bundle.

In a similar way we can define the convexity of M at $(p, \nu) \in B(M)$ by requiring that M lies-as a whole-on one side of the geodesic hypersurface of \bar{M} at p generated as mentioned above.
iii) Height function and second fundamental form

By the height function L_{p}^{ν} for an oriented submanifold M at the point $(p, \nu) \in B(M)$ we mean the function defined on a sufficiently small neighbourhood of the origin in the tangent space of the submanifold at p and assigning to each point of this neighbourhood the height, with respect to ν, of the submanifold above the tangent hyperplane $W=H_{p}(p, \nu)$ as measured in the ambient manifold. Consequently,

$$
L_{p}^{\nu}(x)=\langle y, \nu\rangle
$$

where $y=\exp _{p}^{-1} x$ [4].
Let M be a submanifold of dimension n in a Riemannian manifold \bar{M} of dimension $(n+N)$. Let \bar{V} denote the Riemannian connection of $\bar{M}, \quad \nabla$ the induced connection on M and \langle,$\rangle the Riemannian metric of \bar{M}$. The second fundamental form $\alpha: M_{p} \times M_{p} \rightarrow M_{p}^{\perp}$ of M at the point $p \in M$ is a bilinear map defined by $\alpha(X, Y)=\bar{V}_{X} Y-\nabla_{X} Y$ for vector fields X, Y tangent to M. The
second fundamental form $\alpha^{\nu}: M_{p} \times M_{p} \rightarrow \boldsymbol{R}$ in the direction $\nu \in M_{p}^{\perp}$ may be taken as

$$
\alpha^{\nu}(X, Y)=\langle\alpha(X, Y), \nu\rangle .
$$

By second quadratic form q_{ν} of M at $p \in M$ in the ν-direction we mean the map $q_{\nu}: M_{p} \rightarrow \boldsymbol{R}$ defined by restriction as

$$
q_{\nu}(X)=\alpha^{\nu}(X, X)=\langle\alpha(X, X), \nu\rangle .
$$

Let p be a point of M. It is possible to take a system of normal coordinates $y^{1}, y^{2}, \cdots, y^{n+N}$ with origin p such that $\left(\frac{\partial}{\partial y^{1}}\right)_{p}, \cdots,\left(\frac{\partial}{\partial y^{n}}\right)_{p}$ span M_{p}. Let $\left\{Y_{i}\right\}_{i=1}^{n+N}$ ke an orthonormal basis of M_{p} such that Y_{1}, \cdots, Y_{n} form a basis of M_{p}. We may choose the system of normal coordinates y^{1}, \cdots, y^{n+N} such that $\left(\frac{\partial}{\partial y^{i}}\right)_{p}=Y_{i}$, $1 \leq i \leq n+N$. Note that Y_{n+1}, \cdots, Y_{n+N} form a basis of the normal subspace $M_{p}^{\perp} \subset \bar{M}$.

Let x^{1}, \cdots, x^{n} be an arbitrary coordinate system in a neighbourhood U of p in M and let

$$
y^{i}=y^{i} \quad\left(x^{1}, \cdots, x^{n}\right) 1 \leq i \leq n+N
$$

be the system of equations that defines the imbedding of U into \bar{M}. The second fundamental form of the above embedding is shown to be [5]

$$
\alpha\left(\left(\frac{\partial}{\partial x^{\lambda}}\right)_{p},\left(\frac{\partial}{\partial x^{\mu}}\right)_{p}\right)=\sum_{k=n+1}^{n+N}\left(\partial^{2} y^{k} / \partial x^{\lambda} x^{\mu}\right)_{p} Y_{k}
$$

Namely, the coefficients of α_{p} with respect to the basis $\left(\frac{\partial}{\partial x^{1}}\right)_{p}, \cdots,\left(\frac{\partial}{\partial x^{n}}\right)_{p}$ in M_{p} and the basis Y_{n+1}, \cdots, Y_{n+N} in M_{p}^{\perp} are those of the hessian $\left(\partial^{2} y^{k} / \partial x^{\lambda} x^{\mu}\right)$ at p.

From the last equation, we see that the second fundamental form of the embedding considered above in the direction of $\nu \in M_{p}^{\perp}$ (ν is a unit normal) is given by

$$
\begin{aligned}
\alpha^{\nu}\left(\left(\frac{\partial}{\partial x^{\lambda}}\right)_{p},\left(\frac{\partial}{\partial x^{\mu}}\right)_{p}\right) & =\left\langle\alpha\left(\left(\frac{\partial}{\partial x^{\lambda}}\right)_{p},\left(\frac{\partial}{\partial x^{\mu}}\right)_{p}\right), \nu\right\rangle \\
& =\sum_{k=n+1}^{n+N}\left(\partial^{2} y^{k} / \partial x^{\lambda} \partial x^{\mu}\right)_{p}\left\langle Y_{k}, \nu\right\rangle \\
& =\sum_{k=n+1}^{n+N} \frac{\partial^{2}}{\partial x^{\lambda} \partial x^{\mu}} y^{k}(p)\left\langle Y_{k}, \nu\right\rangle \\
& =\sum_{k=1}^{n+N} \frac{\partial^{2}}{\partial x^{\lambda} \partial x^{\mu}}\left\langle y^{k}(p) Y_{k}, \nu\right\rangle=\frac{\partial^{2} L_{p}^{\nu}(p)}{\partial x^{\lambda} \partial x^{\mu}} .
\end{aligned}
$$

Now, we arrived at the following lemma 1:
LEMMA 1. Let $x: M \rightarrow \bar{M}$ be an immersion of a manifold M into a Riemannian manifold \bar{M}. For a point $p \in M$, let U be the normal coordinate neighbourhood of M around the point $x(p)$. Let L_{p}^{ν} be the height function of M in the direction of $\nu \in M_{p}^{\perp}$ at p as being defined before. Then L_{p}^{ν} has a critical point at p and its Hessian form is the second fundamental form at p in the ν-direction.

It is an easy geometric exercise to conclude that:
COROLLARY 1. Let $x: M \rightarrow \bar{M}$ be a locally convex immersion of a manifold M into a Riemannian manifold \bar{M}, then all second quadratic forms of the immersion x are semi-definite.

Now, if M is a compact n-submanifold of a Euclidean $(n+N)$-space, then there is an $(n+N-1)$-sphere $S^{n+N-1}(k)$ with finite radius k which contains M inside. Let $p \in M \cap S^{n+N-1}(k)$ and ν be a unit normal to the sphere at p. Clearly, ν is also normal to M at p and p is a non-degenerate critical point of the height function L_{p}^{ν} on M. In fact, p is either maxima or minima. This discussion together with lemma 1 show that the second quadratic form q_{ν} of M at p in the ν-direction is definite. Consequently, we have an important result stating that the definitness condition in theorem 1 is unnecessary.
iv) Beltrami map

The central projection or Beltrami map we are going to discuss, represents an important tool for proving our theorem 3 by transfering the immersion problem under consideration from hyperbolic space H^{n+N} to E^{n+N}. We take the sphererical model as a model for hyperbolic space H^{n+N} which is defined as

$$
H^{n+N}=\left\{\left(x^{0}, \cdots, x^{n+N}\right) \in V^{n+N+1}:-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}+\cdots+\left(x^{n+N}\right)^{2}=-1\right\}
$$

where V^{n+N+1} denote the Minkowski space $\left(R^{n+N+1},\langle\rangle,\right)$ with the metric $\langle\rangle=,-d x^{0} \otimes d x^{0}+\sum_{i=1}^{n+N} d x^{i} \otimes d x^{i}$.

The Beltrami map (central projection) [4] $\beta: H^{n+N} \rightarrow E^{n+N}$ is defined to be the map which takes $x \in H^{n+N}$ to the intersection of $E^{n+N_{-}}$-defined by $x^{0}=1$-with the straight line through x and the origin 0 of V^{n+N+1} as indicated in the figure.
In the usual coordinates $x=\left(x^{0}, x^{1}, \cdots, x^{n+N}\right)$,

the map β may be expressed mathematically as follows

$$
\beta(x)=x / x^{0}=\left(1, \frac{x^{1}}{x^{0}}, \cdots, \frac{x^{n+N}}{x^{0}}\right) .
$$

The map β takes H^{n+N} diffeomorphically to the open disk $D(p, 1) \subset E^{n+N}$ of center p and radius 1. From the geometric point of view β is a geodesic map. Consequently, β takes a totally geodesic m-submanifold of H^{n+N} to a linear subvariety E^{m} of E^{n+N}. Also, if a submanifold $M \subset H^{n+N}$ is locally convex then so is $\beta(M) \subset E^{n+N}$.
COROLLARY 2. If $M \subset H^{n+N}$ is locally convex then all second quadratic forms of $\beta(M)$ are semi-definite.

3. Proof of theorem 3

Now, we are going to prove theorem 3 after the above discussion. It is clear that all the conditions of theorem 1 are satisfied for the immersion $\beta \circ x$: $M \rightarrow E^{n+N}$. Consequently, $\beta \circ x(M)$ belongs to a linear subvariety $E^{n+1} \subset E^{n+N}$ and $\beta \circ x$ is an embedding. Since β is a diffeomorphism, then the map x should be an embedding as well. In addition $\beta \circ x(M)$ forms a boundary of a convex body in E^{n+1} and M is homeomorphic to a sphere.

The linear subvariety E^{n+1}-in which M is embedded by $\beta \circ x$-is taken to a totally geodesic submanifod $H^{n+1} \subset H^{n+N}$ of dimension ($n+1$) under the $\operatorname{map} \beta^{-1}$.

Now, we show that $x(M)$ bounds a convex body B in H^{n+1}. Assume, on the contrary, that B is not convex, then there are either
(i) More than a minimal geodesic segment between a pair of points $p, q \in B$. or (ii) A unique minimal geodesic segment from p to q which is not in B.
Case (i) is not true since H^{n+1} has no conjugate points i.e. all its points are poles, then there is a unique geodesic through any two points of H^{n+1}.

Case (ii) if $p, q \in B$ have a unique minimal geodesic segment γ, say, which is not in B and included in H^{n+1}. Under β, which is a geodesic map, the body $\beta(B)$ would not be a convex body in E^{n+1} which is a contradiction. Thus B is a convex body in H^{n+1} and the theorem is proved.

Faculty of Science
Tanta University,
Tanta, Egypt.

REFERENCES

[1] M. A. Beltagy, Isometric immersion into sphere, To appear.
[2] R.L. Bishop, R. J. Ceirrznszn, Geometry of manifolds, Academic press, New York (1964).
[3] M.P. DoCarmo, E. Lima, Isometric immersion with semidefinite second quadratic forms, Arch Math. Basel 20 (1969).
[4] M.P. DoCarmo, F.W. Warner, Rigidity and convexity of hypersurfaces in sphere, J. Diff. Geo. 4 (1970), 133-144.
[5] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Interscience publish. Vol. I (1963) - Vol. II (1966).

