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ISOMETRIC IMMERSION INTO A HYPERBOLIC SPACE

By M.A. Beltagy and M, Swealam

1. Introduction

In this work we discuss the problem of isometric immersion s: 1t4'tf+N of
a compact, connected, oriented a-dimensional C* Rienannian manifold M into

the (z+ N)-dimensional hyperbolic ,pace .Fl+ 
N. The same problem has been

studied in the (z+N)-Euclidean space e"*N i.Zl and also in the unit (z+M-
dimensional sphere So+r [1] as ambient spaces (a)2, .ADl).

Let B(I,D be the bundle of unit normal vectors to x(M, i.e., a point of
a(M is a pair (p, v(P)), where !(r) is a unit normal vector to c(M at s(?).

Actually, in [3] and [l] the following two theorems have been proved.

THEoREM 1 l3l- Assune att second quadratic forms of the inmersisn s : LI-EI+ N

to be semi-definite and definite at one point Qt, v(I))eB(M. Then a(M1 belottgs

to a linear suboariet! E"+r of E"+N cnd z inbeds M as the boundary of a contco

bodli in particulor trI is homeomorfhic to a s?hgrc.

THEoREM 2 l1l. Let t t M-H!*N be a locally conpe. isometric immersion of

4 cornpact, connected, oriented, n-dinensiona! C* Riemannian manifold M into the

open herni.sphere 4+Nc.5'+N. Then x(M) belows to a totelll geodzsic sphere

S'+rcs'+x and c imbeds tuIas thz boundar! of a conoer bodx oJ S"+r. M is homeo-

nor?hic to a sPhere.

The aim of this paper is to prove the following theorem:

THEOREM 3. Consider c: M-H"4N to be a locallx conTter isornetric immersion

of a comract, connected, oriented n-dimensional C* Riemanrtan manilold M thcn

{iul) bclongs to an (fl+1)-tot4llt geodesic submanifold H'n' of H"+N and o
imbeds M as the boundary of a convec body of H"+I ' M is homeomorlhic to a sphere,

Aming to our study we

following section.

grve some definitions and basic materials in the
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2. Baric materials

i) Convex bodies

A subset B in a Riemannian manifold.[1 is called convex if for each pair of
points p, qeB, there is a unique minimal geodesic segment from I to q and

this segment is in 8. An open (closed) convex set which is a submanifold of
M of maximal dimension is called open (closed) convex body.

ii) Convex submanifolds

Let 11 be a submanifold of a Riemannian manifold riZ. U'e say that lll is

convex at the point peIZ in the direction of u q'here tell;-Mrt means the

tangent space ot M at ?e.It (or simply iI is convex at the point (p, v)eB(II))
if there is a neighbourhood of p in lI which lies on one side of the geodesic

hypersurface of Fi at p generated by the hyperplane W of L1o r,r'ith y as its

unit normal. \\te denote such a hypersurface by II(p,r)=expoW.

The submanifold M will be called convex at the point pell it it is convex
at each point (p, D\=B(M) in the fiber over p. M is locally convex if it is

convex at each point (?, ureB(I ) in the normal bundle,

In a similar way we can define the convexity of M at (t, ,)e8(M) by
requiring that itf lies-as a whole-on one side of the geodesic hypersurface of
M at p generated as mentioned above.

iii) Height function and second fundamental form

By the height function trl for an oriented submanifold 11 at the point
(!, v)=B(ll) n'e mean the function defined on a sufficiently small neighbour-
hood of the origin in the tangent space of the submanifold at t and assigning to
each point of this neighbourhood the height, with respect to ,, of the sub-

manifold above the tangent hyperplane \V:HJf, r) as measured in the ambient

manifold. Consequently,

Lik)=s, v)

where Y:st(P- 
t t i41.

Let M be a submanifold of dimension z in a Riemannian manifold i7 of
dimension (r+N). Let v denote the Riemannian connection of fu, V the
induced connection on 14 and (, ) the Riemannian metric of i7. The second

fundamental lorm a t Mrxlr(o-Mi of M at the point ,€lt is a bilinear map

defined by a(X, Y)=Fxy-VxY for vector fields X, f tangent to 14. The
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second fundamentat form c': M/Mi.B in the direction veMf;.may be taken
as

a'(X, Y)=(c(X, Y), u).
By second quadratic foro g, of M at IeM in the v-directio we mean the
naP q,: Mo.-+& defined by restriction as

e,6) =a'(79, x)=(a(x, X), v).
Let, be a point of M, It is possible to trke a system of normrl coordinates

!t, !2,...,!'*N with origin , such that (.+), -,(.+,)rspan Mr. Let {yj};jf
te an orthonoilal basis of M, such ttEt yr,.,., y, form a basis of. Mr. We

rnay ehoose the systern of normal cootdinates tt, .'., 1,'+f such Oat (_-l-): r'
l(i(z*JV. Note that Yr*rr'..r tsi+l| forrr r basis of the normal subspace

ut'cfr.
Let cr, ..., c'be an arbitmry coordin tc systco ia a neighborrbood U of in

M and let

li =!i (sr,..., c") l<i<r+Jv
be the system of equations that defines the imbcdding of Uilio rfr. The second

fundamental form of the above embeddi.g is sbowl to bc fsl

"((+u)o(+il::H,{a\Ln}t)ov,
Namely, the coefficienc of a, with r€spect to the basis (-+)r, ..,,(fir)o ,"

M, and the basis Y"*r, ..., Yr+N in Mt' ate those of the bessian Q2lh/a#)
at 2.

From the last equation, we see tlat the second fundamental fo|m of the
embedding consider€d above in the dir€ction ol ve.Mf, (u is a nnil normal) is
given by

o ((#), (#) ) = <"K-!-, ),, (-u) ), >
r+lI

l-.+l
'+JY

@\t/ar1d4\,

-4-lot,-r+t As.A/o,

(Yl Y)

(Y, v)

='i,furt'@v',,>:#P.



<, >= -aro@a"ollf 0",Eo",.

The Beltrami map (central projection) [4]
p: Ha+N-gn+N is defined to be the map which
takes;rel]"+x to the ;ntersection of Eo+t-defined
by co=I-with the straight line through a and the
origin 0 of y'+N+l as indicated in the figure.

In the usual coordinates s=1xo, at, ..., ,"+N),
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Now, we errived at the following lemma I :

LEMMA 1. Let t: lI-M be an imrnersiol oJ a manilold M into a Riemannian
menifold M, For a ?oint peM, let lJ be the aormal coordinate neighbourhood of
ll'I cround the point ,(p). Let Libe the height fatction of M in the dircction of
,eM; at p as beiry dcfincd beJore. Then Li hes a critical poht at p and it,
Hessiaa form is the second fundamental form at p in the v-direction.

It is an easy geometric exercise to conclude that:

coRoLLARY 1. Let t: LI-fu 6" a locally conter immersion of a manilold II
i o a Riema nian naaiJold M, then all second quadtatic forms of the immersion
t are semi-definite.

Now, if M is a compact z-submanifold of a Euclidean (r+N)-space, then
there is an (a*N-i)-sphere S'+lv-t([) with fin;te radius I which contains lI
inside. Let ,ejl./nS'+N-i (t) and y be a unit normal to the sphere at p. Clearly,
l is also normal to 

^1 
at p a$d, is a non-degenerate critical point of the height

lunction Z! on ,\.1. ln fact, , is either maxima or minima. This discussion
together with lemma I show that the second quadratic form 9, of jv at p in
the ,-direction is definite. Consequently, we have an important result stating
that the definitness condition in theorem I is unnecessarv.

iv) Beltrami map

The central project;on or Beltrami map we are going to discuss, represents
an important tool for proving our theorem 3 by transfering the immersion
problem under consideration from hyperbolic space J1"+d to E"+N. We take
the sphererical model as a model for hyperbolic space fl"+ff which is defined as

Fl"+N= [ (e0, ..., r"+ N 
1 ev"+ N + r : - 1co 12 + {"r )2*... + (co+N; 2= 

- 1 I

where vo*N+r denote the Minkowski space {R"+N+r, (, )) with the metric

t}te n
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the map B may be expressed mathematically as follows

^/-l0(.r):.r/c":(1, i,
.'\

to /'

The map p takes H'+M diffeomorphically to the open disk D(2, llcE"+N
of center p and radirs 1. From the geometric point of view B is a geodesic

map. Consequently, B takes a totally geodesic rz-submanifold of l,I'-N to a

linear subvariety E- of E'+N. Also, if a submanifold xlaHn+N is locally
, ^, ".. - ^r+NConve\ tnen SO lS r5{ltllLl,

COROLL.\RY 2. If I4aII"iN is bcallx conver then all second quadratic forms

of 3(!\I) are semi-definite.

3. Proof of theorem 3

Now, r,i,e are going to prove theorem 3 after the above discussion. It is clear

that all the conditions of theorem I are satisfied for the immersion ,5"c:_

JI-8"1 N. Consequently, 3-r(11) belongs to a linear subvariety E'+taET+N

and 0.r is an embedding. Since p is a diffeomorphism' then the map c should

be an embedding as well. In addition B's(M) forms a boundary of a convex

body in I'+r and lt1 is homeomorphic to a sphere.

The linear subvariety /i'-r-in which M is embedded by B"c-is taken to

a totally geodesic subman itod I1'+1 -If+N of dimension (z+l) under the

map B-'.
No$', we show that r(r11) bounds a convex body a in Hn+l' Assume, on

the contrary, that B is not convex, then there are either
(i) More than a minimal geodesic segment between a pair of points I' q€8.

or (ii) A unique minimal geodesic segment from p to g r,'hich is not in -8.

Case (i) is not true since 11"-' has no conjugate points i.e. all its points

are poles, then there is a unique geodesic through any two points of ll"-t.
Case (ii) if p, q€B have a unique minimal geodesic segment /, say, u'hich

is not in.B and included in ll"+t. Under p' which is a geodesic map, the

body F(B) would not be a convex body in E'rt which is a contradiction. Thus

B is a convex body in -I{'+r and the theolem is proved.
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