Kyungpook Math. J. Volume 25, Number 2 December, 1985

ISOMETRIC IMMERSION INTO A HYPERBOLIC SPACE

By M.A. Beltagy and M. Swealam

1. Introduction

In this work we discuss the problem of isometric immersion $x: M \to H^{n+N}$ of a compact, connected, oriented *n*-dimensional C^{∞} Riemannian manifold *M* into the (n+N)-dimensional hyperbolic space H^{n+N} . The same problem has been studied in the (n+N)-Euclidean space E^{n+N} [3] and also in the unit (n+N)dimensional sphere S^{n+N} [1] as ambient spaces $(n\geq 2, N\geq 1)$.

Let B(M) be the bundle of unit normal vectors to x(M), i.e., a point of B(M) is a pair $(p, \nu(p))$, where $\nu(p)$ is a unit normal vector to x(M) at x(p).

Actually, in [3] and [1] the following two theorems have been proved.

THEOREM 1 [3]. Assume all second quadratic forms of the immersion $x: M \rightarrow E^{n+N}$ to be semi-definite and definite at one point $(p, \nu(p)) \in B(M)$. Then x(M) belongs to a linear subvariety E^{n+1} of E^{n+N} and x imbeds M as the boundary of a convex body; in particular M is homeomorphic to a sphere.

THEOREM 2 [1]. Let $x: M \rightarrow H_s^{n+N}$ be a locally convex isometric immersion of a compact, connected, oriented, n-dimensional C^{∞} Riemannian manifold M into the open hemisphere $H_s^{n+N} \subset S^{n+N}$. Then x(M) belongs to a totally geodesic sphere $S^{n+1} \subset S^{n+N}$ and x imbeds M as the boundary of a convex body of S^{n+1} . M is homeomorphic to a sphere.

The aim of this paper is to prove the following theorem:

THEOREM 3. Consider $x: M \to H^{n+N}$ to be a locally convex isometric immersion of a compact, connected, oriented n-dimensional C^{∞} Riemannian manifold M then x(M) belongs to an (n+1)-totally geodesic submanifold H^{n+1} of H^{n+N} and x imbeds M as the boundary of a convex body of H^{n+1} . M is homeomorphic to a sphere.

Aming to our study we give some definitions and basic materials in the following section.

2. Basic materials

i) Convex bodies

A subset B in a Riemannian manifold M is called convex if for each pair of points p, $q \in B$, there is a unique minimal geodesic segment from p to q and this segment is in B. An open (closed) convex set which is a submanifold of M of maximal dimension is called open (closed) convex body.

ii) Convex submanifolds

Let M be a submanifold of a Riemannian manifold \overline{M} . We say that M is convex at the point $p \in M$ in the direction of ν where $\nu \in M_p^{\perp} - M_p$ means the tangent space of M at $p \in M$ (or simply M is convex at the point $(p, \nu) \in B(M)$) if there is a neighbourhood of p in M which lies on one side of the geodesic hypersurface of \overline{M} at p generated by the hyperplane W of \overline{M}_p with ν as its unit normal. We denote such a hypersurface by $H(p, \nu) = \exp_p W$.

The submanifold M will be called convex at the point $p \in M$ if it is convex at each point $(p, \nu) \in B(M)$ in the fiber over p. M is locally convex if it is convex at each point $(p, \nu) \in B(M)$ in the normal bundle.

In a similar way we can define the convexity of M at $(p, \nu) \in B(M)$ by requiring that M lies-as a whole-on one side of the geodesic hypersurface of \overline{M} at p generated as mentioned above.

iii) Height function and second fundamental form

By the height function L_p^{ν} for an oriented submanifold M at the point $(p, \nu) \in B(M)$ we mean the function defined on a sufficiently small neighbourhood of the origin in the tangent space of the submanifold at p and assigning to each point of this neighbourhood the height, with respect to ν , of the submanifold above the tangent hyperplane $W = H_p(p, \nu)$ as measured in the ambient manifold. Consequently,

$$L_p^{\nu}(x) = \langle y, v \rangle$$

where $y = \exp_{p}^{-1} x$ [4].

Let M be a submanifold of dimension n in a Riemannian manifold \overline{M} of dimension (n+N). Let \overline{V} denote the Riemannian connection of \overline{M} , V the induced connection on M and \langle , \rangle the Riemannian metric of \overline{M} . The second fundamental form $\alpha : M_p \times M_p \to M_p^{\perp}$ of M at the point $p \in M$ is a bilinear map defined by $\alpha(X, Y) = \overline{V}_X Y - \overline{V}_X Y$ for vector fields X, Y tangent to M. The

156

second fundamental form $\alpha^{\nu}: M_p \times M_p \to \mathbf{R}$ in the direction $\nu \in M_p^{\perp}$ may be taken as

$$\alpha^{\nu}(X, Y) = \langle \alpha(X, Y), \nu \rangle.$$

By second quadratic form q_{ν} of M at $p \in M$ in the ν -direction we mean the map $q_{\nu}: M_{p} \rightarrow R$ defined by restriction as

$$q_{\nu}(X) = \alpha^{\nu}(X, X) = \langle \alpha(X, X), \nu \rangle.$$

Let p be a point of M. It is possible to take a system of normal coordinates y^1, y^2, \dots, y^{n+N} with origin p such that $\left(\frac{\partial}{\partial y^1}\right)_p, \dots, \left(\frac{\partial}{\partial y^n}\right)_p$ span M_p . Let $\{Y_i\}_{i=1}^{n+N}$ be an orthonormal basis of M_p such that Y_1, \dots, Y_n form a basis of M_p . We may choose the system of normal coordinates y^1, \dots, y^{n+N} such that $\left(\frac{\partial}{\partial y^i}\right)_p = Y_i$, $1 \le i \le n+N$. Note that Y_{n+1}, \dots, Y_{n+N} form a basis of the normal subspace $M_p^{\perp} \subset \overline{M}$.

Let x^1, \dots, x^n be an arbitrary coordinate system in a neighbourhood U of p in M and let

 $y^{i} = y^{i}$ (x¹, ..., xⁿ) $1 \le i \le n + N$

be the system of equations that defines the imbedding of U into \overline{M} . The second fundamental form of the above embedding is shown to be [5]

$$\alpha\left(\left(\frac{\partial}{\partial x^{\lambda}}\right)_{p}, \left(\frac{\partial}{\partial x^{\mu}}\right)_{p}\right) = \sum_{k=n+1}^{n+N} \left(\frac{\partial^{2} y^{k}}{\partial x^{\lambda} x^{\mu}}\right)_{p} Y_{k}$$

Namely, the coefficients of α_p with respect to the basis $\left(\frac{\partial}{\partial x^1}\right)_p, \dots, \left(\frac{\partial}{\partial x^n}\right)_p$ in M_p and the basis Y_{n+1}, \dots, Y_{n+N} in M_p^{\perp} are those of the hessian $\left(\frac{\partial^2 y^k}{\partial x^\lambda x^\mu}\right)$ at p.

From the last equation, we see that the second fundamental form of the embedding considered above in the direction of $\nu \in M_p^{\perp}$ (ν is a unit normal) is given by

$$\begin{aligned} \alpha^{\nu} \Big(\Big(\frac{\partial}{\partial x^{\lambda}} \Big)_{p}, \ \Big(\frac{\partial}{\partial x^{\mu}} \Big)_{p} \Big) &= \Big\langle \alpha \Big(\Big(\frac{\partial}{\partial x^{\lambda}} \Big)_{p}, \ \Big(\frac{\partial}{\partial x^{\mu}} \Big)_{p} \Big), \ \nu \Big\rangle \\ &= \sum_{\substack{k=n+1 \\ m=n+1}}^{n+N} \Big(\partial^{2} y^{k} / \partial x^{\lambda} \partial x^{\mu} \Big)_{p} \ \langle Y_{k}, \ \nu \rangle \\ &= \sum_{\substack{k=n+1 \\ m=n+1}}^{n+N} \frac{\partial^{2}}{\partial x^{\lambda} \partial x^{\mu}} \ y^{k}(p) \ \langle Y_{k}, \ \nu \rangle \\ &= \sum_{\substack{k=1 \\ m=1}}^{n+N} \frac{\partial^{2}}{\partial x^{\lambda} \partial x^{\mu}} \langle y^{k}(p) \ Y_{k}, \ \nu \rangle = \frac{\partial^{2} L^{\nu}_{p}(p)}{\partial x^{\lambda} \partial x^{\mu}} \end{aligned}$$

Now, we arrived at the following lemma 1:

LEMMA 1. Let $x: M \to \overline{M}$ be an immersion of a manifold M into a Riemannian manifold \overline{M} . For a point $p \in M$, let U be the normal coordinate neighbourhood of M around the point x(p). Let L_p^{ν} be the height function of M in the direction of $\nu \in M_p^{\perp}$ at p as being defined before. Then L_p^{ν} has a critical point at p and its Hessian form is the second fundamental form at p in the ν -direction.

It is an easy geometric exercise to conclude that:

COROLLARY 1. Let $x: M \rightarrow \overline{M}$ be a locally convex immersion of a manifold M into a Riemannian manifold \overline{M} , then all second quadratic forms of the immersion x are semi-definite.

Now, if M is a compact *n*-submanifold of a Euclidean (n+N)-space, then there is an (n+N-1)-sphere $S^{n+N-1}(k)$ with finite radius k which contains Minside. Let $p \in M \cap S^{n+N-1}(k)$ and ν be a unit normal to the sphere at p. Clearly, ν is also normal to M at p and p is a non-degenerate critical point of the height function L_p^{ν} on M. In fact, p is either maxima or minima. This discussion together with lemma 1 show that the second quadratic form q_{ν} of M at p in the ν -direction is definite. Consequently, we have an important result stating that the definitness condition in theorem 1 is unnecessary.

iv) Beltrami map

The central projection or Beltrami map we are going to discuss, represents an important tool for proving our theorem 3 by transfering the immersion problem under consideration from hyperbolic space H^{n+N} to E^{n+N} . We take the sphererical model as a model for hyperbolic space H^{n+N} which is defined as

 $H^{n+N} = \{ (x^{0}, \dots, x^{n+N}) \in V^{n+N+1} : -(x^{0})^{2} + (x^{1})^{2} + \dots + (x^{n+N})^{2} = -1 \}$ where V^{n+N+1} denote the Minkowski space $(R^{n+N+1}, \langle , \rangle)$ with the metric $\langle , \rangle = -dx^{0} \otimes dx^{0} + \sum_{i=1}^{n+N} dx^{i} \otimes dx^{i}.$

The Beltrami map (central projection) [4] $\beta: H^{n+N} \rightarrow E^{n+N}$ is defined to be the map which takes $x \in H^{n+N}$ to the intersection of E^{n+N} -defined by $x^0=1$ -with the straight line through x and the origin 0 of V^{n+N+1} as indicated in the figure.

In the usual coordinates $x = (x^0, x^1, \dots, x^{n+N})$,

the map β may be expressed mathematically as follows

$$\beta(x) = x/x^0 = \left(1, \frac{x^1}{x^0}, \cdots, \frac{x^{n+N}}{x^0}\right).$$

The map β takes H^{n+N} diffeomorphically to the open disk $D(p, 1) \subset E^{n+N}$ of center p and radius 1. From the geometric point of view β is a geodesic map. Consequently, β takes a totally geodesic *m*-submanifold of H^{n+N} to a linear subvariety E^m of E^{n+N} . Also, if a submanifold $M \subset H^{n+N}$ is locally convex then so is $\beta(M) \subset E^{n+N}$.

COROLLARY 2. If $M \subset H^{n+N}$ is locally convex then all second quadratic forms of $\beta(M)$ are semi-definite.

3. Proof of theorem 3

Now, we are going to prove theorem 3 after the above discussion. It is clear that all the conditions of theorem 1 are satisfied for the immersion $\beta \circ x$: $M \rightarrow E^{n+N}$. Consequently, $\beta \circ x(M)$ belongs to a linear subvariety $E^{n+1} \subset E^{n+N}$ and $\beta \circ x$ is an embedding. Since β is a diffeomorphism, then the map x should be an embedding as well. In addition $\beta \circ x(M)$ forms a boundary of a convex body in E^{n+1} and M is homeomorphic to a sphere.

The linear subvariety E^{n+1} -in which M is embedded by $\beta \circ x$ -is taken to a totally geodesic submanifod $H^{n+1} \subset H^{n+N}$ of dimension (n+1) under the map β^{-1} .

Now, we show that x(M) bounds a convex body B in H^{n+1} . Assume, on the contrary, that B is not convex, then there are either

(i) More than a minimal geodesic segment between a pair of points p, $q \in B$. or (ii) A unique minimal geodesic segment from p to q which is not in B.

Case (i) is not true since H^{n+1} has no conjugate points i.e. all its points are poles, then there is a unique geodesic through any two points of H^{n+1} .

Case (ii) if p, $q \in B$ have a unique minimal geodesic segment γ , say, which is not in B and included in H^{n+1} . Under β , which is a geodesic map, the body $\beta(B)$ would not be a convex body in E^{n+1} which is a contradiction. Thus B is a convex body in H^{n+1} and the theorem is proved.

> Faculty of Science Tanta University, Tanta, Egypt.

REFERENCES

- [1] M.A. Beltagy, Isometric immersion into sphere, To appear.
- [2] R.L. Bishop, R.J. Ceirrznszn, *Geometry of manifolds*, Academic press, New York (1964).
- [3] M.P. DoCarmo, E. Lima, Isometric immersion with semidefinite second quadratic forms, Arch Math. Basel 20 (1969).
- [4] M.P. DoCarmo, F.W. Warner, Rigidity and convexity of hypersurfaces in sphere, J. Diff. Geo. 4 (1970), 133-144.
- [5] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Interscience publish. Vol. I (1963)-Vol. II (1966).