SOME PROPERTIES OF BITOPOLOGICAL HYPERSPACES

By Mila Mršević

1. Introduction

In this paper we continue the study of topological and bitopological properties considered in [1], [3], [4], [5], [6] and [10]. We use the same terms and notations as in [3] and [5] but without the assumption that at least one of the spaces (X, τ^i) , i=1,2, is a T_1 space.

In a bitopological space (X, τ^1, τ^2) a set is said to be *quasiopen* if it is a union of τ^1 open and τ^2 open sets. A set is quasiclosed if its complement is quasiopen. A set is *semiopen* or τ open (semiclosed or τ closed) if it is open (closed) in the topological space (X, τ) , where $\tau = \tau^1 \vee \tau^2$, is the least upper bound topology of τ^1 and τ^2 . A space (X, τ^1, τ^2) is quasicompact if the topological space (X, τ) is compact. The closure of a subset A in a topological space (X, τ^i) is denoted by τ^i cl A. The quasiclosure of a subset A in a bitopological space (X, τ^1, τ^2) is qcl $A = \tau^1$ cl $A \cap \tau^2$ cl A. Notions of pairwise T_k and weak pairwise T_k spaces for k = 0, 1, 2 and 3 coincide with those in [12].

If (X, τ^1, τ^2) is an arbitrary bitopogical space, then $\mathscr{A}(X) = \{A \subset X | A \neq \phi\}$, $\mathscr{L}(X) = \{A \in \mathscr{A}(X) | A \text{ is } \tau \text{ closed}\}$, $\mathscr{L}(X) = \{A \in \mathscr{A}(X) | A \text{ is quasiclosed}\}$, $\mathscr{L}(X) = \{A \in \mathscr{A}(X) | A \text{ is } \tau^1 \text{ or } \tau^2 \text{ closed}\}$, $\mathscr{L}(X) = \{A \in \mathscr{A}(X) | A \text{ is } \tau^1 \text{ and } \tau^2 \text{ closed}\}$, $\mathscr{L}(X) = \{A \in \mathscr{A}(X) | A \text{ is } \tau^i \text{ compact}\}$, for i = 1, 2, $\mathscr{L}(X) = \mathscr{L}(X) \cap \mathscr{L}(X)$, $\mathscr{L}(X) = \mathscr{L}(X) \cap \mathscr{L}(X)$, $\mathscr{L}(X) = \{A \in \mathscr{A}(X) | A \text{ has at most } n \text{ elements}\}$.

If \mathscr{F} is one of the collections $\mathscr{B}(X)$, $\mathscr{K}(X)$, $\mathscr{Q}(X)$, $\mathscr{S}(X)$ or $\mathscr{A}(X)$ then $\mathscr{CF} = \{A \in \mathscr{F} \mid A \text{ is quasicompact}\},$ $\mathscr{C}^*\mathscr{F} = \{A \in \mathscr{F} \mid A \text{ is } \tau^1 \text{ and } \tau^2 \text{ compact}\}.$

If \mathscr{F} is any collection of non-empty subsets of X, for any subset $V \subset X$ we consider the following subcollections:

$$\langle V \rangle = \{A \in \mathcal{F} \mid A \subset V\} \text{ and } V \langle = \{A \in \mathcal{F} \mid A \cap V \neq \emptyset\}.$$

In particular, the families

$$\bar{\mathcal{F}}^i = \{ \langle V \rangle | V \in \tau^i \}, \ \mathcal{Q}^i = \{ \rangle V \langle | V \in \tau^i \} \text{ and } \mathcal{P} = \bar{\mathcal{F}}^i \cup \mathcal{Q}^i$$

are subbases for topologies on \mathcal{F} induced by τ^i in X; these are the upper semi-finite, the lower semi-finite and the finite (Vietoris) topology, respectively denoted by $\overline{\mathcal{F}}^i$, $\underline{\mathcal{F}}^i$ and \mathcal{F}^i , The family of subcollections

$$<\!\!V_0:V_1,\cdots,V_n\!\!>=\!\{A\!\!\in\!\!\mathcal{F}|A\!\!\subset\!\!V_0\!\!=\!\!\bigcup\limits_{k=1}^nV_k\text{ and }A\cap V_k\!\!\neq\!\!\phi\text{ for each }k\!\!=\!\!1,\cdots,n\}$$

where $V_k \in \tau^i$ and $n \in \mathbb{N}$ is a basis for the topology \mathscr{T}^i .

In [6], in a bitopological space (X, τ^1, τ^2) the equivalence relation \sim was defined by

$$x \sim y \Leftrightarrow \operatorname{qcl}\{x\} = \operatorname{qcl}\{y\}.$$

As in [6], let [x] denote the equivalence class of the element x of X, \tilde{X} be the quotient set under the relation \sim , $\tilde{\tau}^1$, $\tilde{\tau}^2$ and $\tilde{\tau}$ the quotient topologies in \tilde{X} of τ^1 , τ^2 and τ respectively, and $p: X \rightarrow \tilde{X}$ the quotient mapping. It was shown [6, Theorem 1] that many of the bitopological properties are shared by X and \tilde{X} .

We make extensive use of the following results from [6] which are restated here for convenience.

PROPOSITION A ([6, Corollary 1]). For each semiopen (semiclosed) subset A of X, $p^{-1}(p(A)) = A$ holds.

PROPOSITION B ([6, Proposition 4]). The topology $\tilde{\tau}$ is the least upper bound topology of $\tilde{\tau}^1$ and $\tilde{\tau}^2$, i.e. $\tilde{\tau} = \tilde{\tau}^1 \vee \tilde{\tau}^2$.

PROPOSITION C ([6, Corollary 2]). The quotient mapping p is pairwise open and pairwise closed.

PROPOSITION D ([6, Corollary 3]). For each $x \in X$, the set [x] is quasicompact in X, hence τ^1 and τ^2 compact.

PROPOSITION E ([6, Proposition 5]). For each $A \subseteq X$ we have $\tilde{\tau}^i \operatorname{cl} p(A) = p(\tau^i \operatorname{cl} A)$ for $i=1, 2, \text{ and } \operatorname{qcl}(p(A)) = p(\operatorname{qcl} A)$.

PROPOSITION F ([6, Proposition 9]). If a bitopological space (X, τ^1, τ^2) is pairwise R_0 , the topological space (X, τ) is an R_0 space.

PROPOSITION G ([6, Proposition 11]). Every weak pairwise T₁ pairwise R₁

bitopological space is weak pairwise T2.

2. Pairwise homeomorphism of bitopological hyperspaces

In the sequel the same notation is used for a topology on a set and for the relative topology on its subset.

THEOREM 3. Let (X, τ^1, τ^2) be a bitopological space, $(\tilde{X}, \tilde{\tau}^1, \tilde{\tau}^2)$ be its quotient space and \mathcal{F} one of collections $\mathcal{S}(X)$, $\mathcal{Q}(X)$, $\mathcal{K}(X)$ or $\mathcal{Q}(X)$. If θ^i is one of topologies \mathcal{F}^i , $\bar{\mathcal{F}}^i$ or $\underline{\mathcal{F}}^i$ for i=1, 2, then the corresponding hyperspaces $(\mathcal{F}, \theta^1, \theta^2)$ and $(\bar{\mathcal{F}}, \bar{\theta}^1, \bar{\theta}^2)$ are pairwise homeomorphic.

PROOF. (i) We prove first that the hyperspaces $(\mathscr{S}(X), \theta^1, \theta^2)$ and $(\mathscr{S}(\tilde{X}), \tilde{\theta}^1, \tilde{\theta}^2)$ are pairwise homeomorphic. Let $q: \mathscr{S}(X) \to \mathscr{S}(\tilde{X})$ be defined by the quotient mapping p, i.e. for each $A \in \mathscr{S}(X)$, q(A) = p(A). The mapping q is the restriction of the bijection q^* from Proposition 6 of [6]. The bijection q is pairwise continuous since for each $\tilde{\tau}^i$ open subset \tilde{V} of \tilde{X} and the corresponding subbasic elements of the topology $\tilde{\mathscr{T}}$, i=1,2, we have

$$q^{-1}(\langle \tilde{V} \rangle) = \{A \in \mathcal{S}(X) \mid p^{-1}(p(A)) \subset p^{-1}(\tilde{V})\} = \langle p^{-1}(\tilde{V}) \rangle \in \overline{\mathcal{J}}^{i}$$

and

$$q^{-1}(>\tilde{V}<) = \{A \in \mathcal{S}(X) \mid p^{-1}(p(A)) \cap p^{-1}(\tilde{V}) \neq \emptyset\} = > p^{-1}(\tilde{V}) < \in \mathcal{J}^{i}.$$

Similarly, q is a pairwise open mapping since for each τ^i open subset V of X and the corresponding subtasic elements of the topology τ^i , i=1,2,

$$q(\langle V \rangle) = \langle p(V) \rangle \in \overline{\mathcal{J}}^i$$
 and $q(\langle V \rangle) = \langle p(V) \rangle \in \underline{\mathcal{J}}^i$

holds.

(ii) The pairwise homeomorphism $q: \mathscr{S}(X) \to \mathscr{S}(\tilde{X})$ induces a pairwise homeomorphism of subspaces $\mathscr{Q}(X)$ and $\mathscr{Q}(\tilde{X})$. Furthermore, since p is a pairwise continuous and pairwise closed mapping, $q(\mathscr{K}(X)) = \mathscr{K}(\tilde{X})$ and $q(\mathscr{R}(X)) = \mathscr{R}(\tilde{X})$ holds. Hence q induces pairwise homeomorphisms of the corresponding subspaces.

COROLLARY 1. Under the notations given in the previous theorem, the subspaces $(\mathscr{CF}, \theta^1, \theta^2)$ and $(\mathscr{CF}, \tilde{\theta}^1, \tilde{\theta}^2)$, $((\mathscr{C*F}, \theta^1, \theta^2)$ and $(\mathscr{C*F}, \tilde{\theta}^1, \tilde{\theta}^2))$ are pairwise homeomorphic.

3. Hyperspaces of pairwise R_0 and pairwise R_1 spaces

Some properties of hyperspaces of topological \boldsymbol{R}_0 and \boldsymbol{R}_1 spaces have been

investigated in [1] and [4]. We consider here analogous questions in the case of pairwise R_0 and pairwise R_1 bitopological spaces.

Propositions F, E and D imply the following result.

COROLLARY 2. If (X, τ^1, τ^2) is a pairwise R_0 space, then $\mathcal{J}_1(\tilde{X}) \subset \mathscr{CQ}(\tilde{X}) \subset \mathscr{C}^*\mathcal{Q}(\tilde{X}) \subset \mathscr{Q}(\tilde{X})$, i.e. $\tilde{X} \subset \mathscr{CQ}(X) \subset \mathscr{C}^*\mathcal{Q}(X) \subset \mathscr{Q}(X)$.

The collection $\mathcal{Q}(X)$ cannot be replaced by $\mathcal{K}(X)$ even in the case X is pairwise R_1 or pairwise regular, as Example 1 shows. Example 1 of [7] shows that the converse statement of the previous corollary does not hold in general.

EXAMPLE 1. Let $X=\mathbf{R}$, the set of real numbers, τ^1 be the left hand topology and τ^2 the right hand topology. $\mathscr{K}(X) = \{(-\infty, a] | a \in \mathbf{R}\} \cup \{[a, +\infty) | a \in \mathbf{R}\} \cup \{\mathbf{R}\}$, while for each $x \in \mathbf{R}$, $[x] = \{x\}$.

PROPOSITION 1. Let (X, τ^1, τ^2) be pairwise R_0 . For each $F \in \mathcal{Q}(X)$, $\mathcal{I}^1 \operatorname{cl}\{F\} \cap \mathcal{I}^2 \operatorname{cl}\{F\} = \{F\}$, i.e. the quasiclosure of $\{F\}$ in $(\mathcal{Q}(X), \mathcal{I}^1, \mathcal{I}^2)$ is $\{F\}$.

PROOF. Let F, $H \in \mathcal{Q}(X)$ and $F \neq H$. Then $F = F_1 \cap F_2$ and $H = H_1 \cap H_2$, where F_k and H_k are τ^k closed for k = 1, 2. There is an $x \in (F - H) \cup (H - F)$. (i) Let $x \in F - H$. There exists an $i \in \{1, 2\}$ such that $x \notin H_i$. Then $x \in H_i^c$ and $\tau^j \operatorname{cl}\{x\} \subset H_i^c$, for $j \in \{1, 2\} - \{i\}$. Let $V = (\tau^j \operatorname{cl}\{x\})^c$. Then $V \in \tau^j$, $H \subset H_i \subset V$ and $F \not\subset V$. Let $V = \langle V \rangle \in \mathcal{F}^j \subset \mathcal{F}^j$. Since $H \in \mathcal{V}$ and $F \notin \mathcal{V}$, $H \notin \mathcal{F}^j \operatorname{cl}\{F\}$, so $H \notin \operatorname{gcl}\{F\}$.

(ii) If $x \in H - F$, there is an $i \in \{1, 2\}$ such that $x \in H$ and $x \notin F_i$. Let $U = F_i^c$, then $U \in \tau^i$ and $\mathscr{U} = > U < \in \mathcal{I}^i \subset \mathcal{I}^i$. It follows that $H \in \mathscr{U}$, $F \notin \mathscr{U}$, so $H \notin \mathcal{I}^i \subset F$. Hence, $H \notin \operatorname{qcl}\{F\}$.

COROLLARY 3. If (X, τ_1, τ_2) is pairwise R_0 , then for each $F \in \mathcal{Q}(X)$ the set $\{F\}$ is semiclosed in $(\mathcal{Q}(X), \mathcal{T}^1, \mathcal{T}^2)$, i.e. it is \mathcal{T} closed in $\mathcal{Q}(X)$, where $\mathcal{T} = \mathcal{T}^1 \vee \mathcal{T}^2$ is the least upper bound topology of \mathcal{T}^1 and \mathcal{T}^2 .

COROLLARY 4. If (X, τ^1, τ^2) is pairwise R_0 and \mathcal{F} is one of the collections $\mathscr{CQ}(X)$ or $\mathscr{C}^*\mathscr{Q}(X)$, then for each $E \in \mathcal{F}$ the set $\{F\}$ is quasiclosed (semiclosed) in $(\mathcal{F}, \mathcal{F}^1, \mathcal{F}^2)$.

In Proposition 1 and Corollaries 3 and 4 the collection $\mathcal{O}(X)$ cannot be replaced by $\mathcal{S}(X)$ in general. It can be seen from Example 1. For example,

for $F = \{0, 1\} \in \mathscr{CS}(X) \subset \mathscr{C}^*\mathscr{S}(X) \subset \mathscr{S}(X)$, $\operatorname{qcl}\{F\} = \mathscr{I}\operatorname{cl}\{F\} \supset H = [0, 1]$ and $H \in \mathscr{CS}(X) \subset \mathscr{C}^*\mathscr{S}(X) \subset \mathscr{S}(X)$.

PROPOSITION 2. Let (X, τ^1, τ^2) be a pairwise R_1 space and \mathcal{F} be one of the collections $\mathcal{Q}(X)$ or $\mathcal{S}(X)$. The subcollection \tilde{X} is semiclosed in $(\mathcal{F}, \theta^1, \theta^2)$, i.e. the collection $\mathcal{J}_1(\tilde{X})$ is semiclosed in $(\bar{\mathcal{F}}, \bar{\theta}^1, \bar{\theta}^2)$, where $\theta^i \supset \mathcal{J}^i$ for i=1,2.

PROOF. Let $F \in \mathcal{F} - \mathcal{J}_1(\tilde{X})$. There are [x], $[y] \in F$ such that $[x] \neq [y]$, moreover $\operatorname{qcl}\{x \cap \operatorname{qcl}\{y\} = \phi$. There is an $i \in \{1, 2\}$ such that $x \notin \tau^i \operatorname{cl}\{y\}$. Since X is pairwise R_1 , there are disjoint sets $U \in \tau^i$ and $V \in \tau^j$, $j \in \{1, 2\} - \{i\}$, such that $x \in U$, $y \in V$. Then $\mathcal{U} = \mathcal{V} \cup \mathcal{J}^i$, $\mathcal{V} = \mathcal{V} \cup \mathcal{J}^j$ and $F \in \mathcal{W} = \mathcal{U} \cap \mathcal{V}$. The collection \mathcal{W} is semiopen in \mathcal{F} and $\mathcal{W} \cap \mathcal{J}_1(\tilde{X}) = \phi$.

COROLLARY 5. Under the assumptions in the previous proposition, the collection \tilde{X} is semiclosed in $\mathcal{C}^*\mathcal{F}$ and its subspace \mathcal{CF} .

The collection \tilde{X} need not be quasiclosed in any of the spaces $\mathcal{Q}(X)$ and $\mathcal{S}(X)$, and their subspaces $\mathcal{Q}(X)$ and $\mathcal{S}(X)$. It can be seen again from Example 1. The space $(R,\mathcal{L},\mathcal{D})$ is pairwise regular, but for each $F \in \mathcal{Q}(X) - \mathcal{J}_1(R)$ and each basic element \mathcal{D}_i for the topology \mathcal{T}^i (i=1,2), $F \in \mathcal{D}_i$ implies $\mathcal{D}_i \cap \mathcal{J}_1(R) \neq \emptyset$. Also, the converse of the above statement do not hold in general, as Example 1 of [7] shows. The space is not pairwise R_1 , not even pairwise R_0 , but \tilde{X} is semiclosed in $\mathcal{S}(X) = \mathcal{Q}(X) = \mathcal{CS}(X) = \mathcal{CS}(X)$ with the finite topologies.

We emphasize that in general the least upper bound topology \mathscr{T} of \mathscr{T}^1 and \mathscr{T}^2 is strictly coarser than the finite topology induced by $\tau = \tau^1 \vee \tau^2$.

QUESTION. If (X, τ^1, τ^2) is pairwise R_0 , \mathscr{F} one of the collections $\mathscr{S}(X)$ or $\mathscr{Q}(X)$ and \tilde{X} is semiclosed in $(\mathscr{F}, \theta^1, \theta^2)$, is X pairwise R_1 ?

In fact, the proof of Theorem 1 of [3] gives the following improvement of that theorem and Propositions 5 and 6 of [3].

PROPOSITION 3. Let $\mathcal{J}_1(X) \subset \mathcal{Q}(X)$ and σ be a collection such that $\mathcal{Q}(X) \subset \sigma$. (i) If $\theta^i \supset \mathcal{J}^i$ for i=1, 2, then (X, τ^1, τ^2) is quasicompact if and only if $(\sigma, \theta^1, \theta^2)$ is quasicompact.

(ii) If $\theta^i = \overline{\mathcal{F}}^i$ and $\theta^j \supseteq \underline{\mathcal{F}}^j$ for $i, j \in \{1, 2\}$ and $i \neq j$, the quasicompactness of the space (X, τ^1, τ^2) implies the quasicompactness of $(\sigma, \theta^1, \theta^2)$.

From Theorem 1, Proposition 3 and Corollary 2 we have:

PROPOSITION 4. Let (X, τ^1, τ^2) be a pairwise R_0 space and σ be a collection such that $\mathcal{Q}(X) \subset \sigma \subset \mathcal{S}(X)$. (i) If $\theta^i \supset \underline{\mathcal{I}}^i$ for i=1, 2, the space (X, τ^1, τ^2) is quasicompact if and only if $(\sigma, \theta^1, \theta^2)$ is quasicompact.

(ii) If $\theta^i = \overline{\mathcal{J}}^i$ and $\theta^j \supset \underline{\mathcal{J}}^j$ for $i, j \in \{1, 2\}$ and $i \neq j$, the quasicompactness of (X, τ^1, τ^2) implies the quasicompactness of the hyperspace $(\sigma, \theta^1, \theta^2)$.

Let us remark that in Propositions 3 and 4, instead of σ the collection of all quasicompact elements of σ can be considered.

Vasudevan and Goel gave in [10] a detailed investigation of separation axioms in bitopological hyperspaces 2^X , BC(X) and C(X) equipped with finite topologies. The first two are denoted in this paper by $\mathcal{K}(X)$ and $\mathcal{B}(X)$ while the third one is $\mathcal{C}^*\mathcal{K}(X)$. We add here a few statements concerning weak pairwise T_k and pairwise T_k axioms for k=0, 1, 2, in the bitopological hyperspaces considered in this paper. We observe that the weak pairwise T_1 axiom is stronger than the pairwise T_1 axiom considered in [10]. (See [7].)

PROPOSITION 5. For a bitopological space (X, τ^1, τ^2) the hyperspace $(\mathcal{B}(X), \theta^1, \theta^2)$ is pairwise T_0 , where $\theta^i \supset \mathcal{I}^i$ for i=1,2.

PROPOSITION 6. If $\sigma \subset \mathcal{Q}(X)$ and $\theta^i \supset \underline{\mathcal{I}}^j$, i=1, 2, the hyperspace $(\sigma, \theta^1, \theta^2)$ is weak pairwise T_0 .

REMARK. Example 1 shows that Proposition 6 does not hold in general for the collection $\mathscr{S}(X)$, and that the weak pairwise T_0 property cannot be replaced by pairwise T_0 . Since $\mathscr{S}(\mathbf{R})$ is the collection of all nonempty closed subsets of the real line, $A = \{-1, 1\}$ and $B = \{-1, 0, 1\}$ belong to $\mathscr{CS}(\mathbf{R}) \subset \mathscr{S}(\mathbf{R})$. For each $V \in \mathscr{L} \cup \mathscr{D}$, $A \in \mathcal{V} \setminus \mathcal{V}$ if and only if $B \in \mathcal{V} \setminus \mathcal{V}$ as well as $A \in \mathcal{V} \setminus \mathcal{V}$ if and only if $B \in \mathcal{V} \setminus \mathcal{V}$. Hence, $(\mathscr{S}(\mathbf{R}), \theta^1, \theta^2)$ and $(\mathscr{CS}(\mathbf{R}), \theta^1, \theta^2)$ are not weak pairwise T_0 .

Also, the space $(\mathcal{K}(X), \mathcal{I}^1, \mathcal{I}^2)$ is not pairwise T_0 since for $A = [0, +\infty)$ and $B = \mathbb{R}$, there is no \mathcal{I}^1 open set \mathcal{U} such that $A \in \mathcal{U}$ and $B \not\equiv \mathcal{U}$, nor a \mathcal{I}^2 open set \mathcal{V} such that $A \not\in \mathcal{V}$ and $B \in \mathcal{V}$.

Moreover, in Proposition 6 the finite or lower semi-finite topology θ^i cannot be replaced by the upper semi-finite topology \mathcal{J}^i . It can be seen from the

following example.

EXAMPLE 2. Let X = R, τ^1 be the left hand topology and τ^2 the indiscrete topology. Then $\mathcal{K}(X) = \{[a, +\infty) | a \in R\} \cup \{R\}$. In $(\mathcal{K}(X), \overline{\mathcal{J}}^1, \mathcal{J}^2)$ both topologies are indiscrete, so the space is not weak pairwise T_0 .

PROPOSITION 7. If (X, τ^1, τ^2) is pairwise R_0 the hyperspace $(\mathcal{B}(X), \mathcal{F}^1, \mathcal{F}^2)$ is pairwise T_1 .

COROLLARY 6. If (X, τ^1, τ^2) is pairwise R_0 , then $(\mathcal{B}(X), \mathcal{I}^1, \mathcal{I}^2)$ is pairwise R_0 .

The converse of the above corollary does not hold in general. The space in Example 1 of [7] is not pairwise R_0 , but $\mathscr{B}(X) = \{X\}$, so $(\mathscr{B}(X), \mathscr{T}^1, \mathscr{T}^2)$ is pairwise R_0 .

QUESTION. If (X, τ^1, τ^2) is pairwise R_0 , is $(\mathcal{F}, \mathcal{F}^1, \mathcal{F}^2)$ pairwise R_0 , where \mathcal{F} is $\mathcal{S}(X)$ or $\mathcal{Q}(X)$?

But we have:

If (X, τ) is R_0 and $\mathcal{Q}(X)$ or $\mathcal{S}(X)$ is pairwise R_0 (pairwise R_1), then (X, τ^1, τ^2) is pairwise R_0 (pairwise R_1).

If (X, τ^1, τ^2) is pairwise R_1 , any of the collections $\mathscr{B}(X)$, $\mathscr{K}(X)$, $\mathscr{L}(X)$ and $\mathscr{S}(X)$ with the finite topologies \mathscr{T}^1 and \mathscr{T}^2 need not be pairwise R_1 , as follows from the topological case. (See Theorem 4.9 of [2].)

PROPOSITION 8. If a bitopological space (X, τ^1, τ^2) is pairwise R_1 , its hyperspace $(\mathscr{C}^*(X), \mathscr{I}^1, \mathscr{I}^2)$ is also pairwise R_1 .

PROOF. Let $\mathscr{F} = \mathscr{C}^*(X)$. F, $H \in \mathscr{F}$ and $F \notin \mathscr{I}^i \operatorname{cl}\{H\}$ for $i \in \{1, 2\}$. There is a basic element $\mathscr{W} = \langle W_0 ; W_1, \cdots, W_n \rangle \in \mathscr{I}^i$ such that $F \in \mathscr{W}$ and $H \notin \mathscr{W}$. We consider the following cases:

1. If $H \cap W_k = \phi$ for some $k \in \{1, \cdots, n\}$, then there is an $x \in F \cap W_k$. It follows that $\tau^j \operatorname{cl}\{x\} \subset W_k$ for $j \in \{1, 2\} - \{i\}$. For each $y \in H$, $y \in \tau^j \operatorname{cl}\{x\}$, so there are $V_y \in \tau^j$, $U_y \in \tau^i$ such that $y \in V_y$, $x \in U_y$ and $U_y \cap U_y = \phi$. A finite subcollection $\{V_{y_1}, \cdots, V_{y_n}\}$ covers H. Let $V = \bigcup_{s=1}^m V_{y_s}$ and $U = \bigcap_{s=1}^m U_{y_s}$. Then $H \subset V \in \tau^j$, $x \in U \in \tau^i$,

 $H \in \mathcal{V} = \langle V \rangle \in \overline{\mathcal{J}}^i \subset \mathcal{J}^i, F \in \mathcal{U} = \langle U \rangle \in \underline{\mathcal{J}}^i \subset \mathcal{J}^i \text{ and } \mathcal{U} \cap \mathcal{V} = \emptyset.$

2. If $H \not\subset W_0$, then there is an $\eta \in H \supset W_0^c$. It follows that $\tau^i \operatorname{cl}\{\eta\} \subset W_0^c$. For each $\varphi \in F$, $F \subset W_0$ implies $\varphi \in \tau^i \operatorname{cl}\{\eta\}$, so there are $U_\varphi \in \tau^i$, $V_\varphi \in \tau^j$ such that $\varphi \in U_\varphi$, $\eta \in V_\varphi$ and $U_\varphi \cap V_\varphi = \varphi$. A finite subcollection $\{U_{\varphi_1}, \cdots, U_{\varphi_m}\}$ covers F. Let $U = \bigcup_{s=1}^m U_{\varphi_s}$ and $V = \bigcap_{s=1}^m V_{\varphi_s}$. Then $F \subset U \in \tau^i$, $\eta \in V \in \tau^j$ and $U \cap V = \varphi$. Hence $F \in \mathcal{W} = \langle U \rangle \in \overline{\mathcal{J}}^i \subset \mathcal{J}^i$, $H \in \mathcal{W} = \langle V \rangle \in \mathcal{J}^j \subset \mathcal{J}^j$ and $\mathcal{W} \cap \mathcal{W} = \varphi$.

PROPOSITION 9. If (X, τ^1, τ^2) is pairwise R_0 , then $(\mathcal{Q}(X), \mathcal{T}^1, \mathcal{T}^2)$ is weak pairwise T_1 .

PROOF. Let F, $H \in \mathcal{Q}(X)$ and $F \neq H$. There is an $x \in (F-H) \cup (H-F)$. Let $x \in F-H$. Since $H = H_1 \cap H_2$, where H_k is τ^k closed for k=1, 2, there is an $i \in \{1,2\}$ such that $x \notin H_i$. X is pairwise R_0 , hence $\tau^j \operatorname{cl}\{x\} \cap H_i = \phi$, for $j \in \{1,2\}$ $-\{i\}$. Let $U = H_i^c$ and $V = (\tau^j \operatorname{cl}\{x\})^c$. Then $F \in \mathcal{U} = >U < \in \underline{\mathcal{I}}^i \subset \mathcal{I}^i$, $H \notin \mathcal{U}$, $H \in \mathcal{U} = < V > \in \underline{\mathcal{I}}^j \subset \mathcal{I}^j$ and $F \notin \mathcal{U}$.

From Propositions 8, 9 and G, we have the following result.

COROLLARY 7. If (X, τ^1, τ^2) is pairwise R_1 , then $(\mathcal{C}^*\mathcal{Q}(X), \mathcal{I}^1, \mathcal{I}^2)$ and its subspace $(\mathcal{C}\mathcal{Q}(X), \mathcal{I}^1, \mathcal{I}^2)$ are weak pairwise T_2 .

Theorem 3.3 of [10] can be generalised as follows:

PROPOSITION 10. If (X, τ^1, τ^2) is pairwise regular, then $(\mathcal{Q}(X), \mathcal{I}^1, \mathcal{I}^2)$ is weak pairwise T_2 .

Example 1 shows that in Propositions 9 and 10 and Corollary 7, the collection $\mathscr{Q}(X)$ cannot be replaced by $\mathscr{S}(X)$. The space $(\mathscr{S}(R), \mathscr{T}^1, \mathscr{T}^2)$ and its subspace $(\mathscr{CS}(R), \mathscr{T}^1, \mathscr{T}^2)$ are not even weak pairwise T_0 , while $(R, \mathscr{L}, \mathscr{D})$ is pairwise regular. Also, any of the finite topologies cannot be replaced by a semi-finite.

The converse statements to Propositions 9 and 10 and Corollary 7 do not hold, as the following example shows.

EXAMPLE 3. Let $X = \{a, b\}$, $\tau^1 = \{\phi, \{a\}, X\}$ and τ^2 be discrete topology. The space (X, τ^1, τ^2) is not pairwise R_0 , but the space $(\mathcal{F}, \mathcal{F}^1, \mathcal{F}^2)$ is

weak pairwise T_2 , where $\mathcal{F} = \mathcal{S}(X) = \mathcal{Q}(X) = \mathcal{K}(X) = \mathcal{A}(X) = \mathcal{CF}$.

PROPOSITION 11. If in the bitopological space (X, τ^1, τ^2) the space (X, τ^1) is T_1 , $\theta^1 \supset \overline{\mathcal{I}}^1$ and θ^2 is one of topologies \mathcal{I}^2 , $\overline{\mathcal{I}}^2$ or $\underline{\mathcal{I}}^2$, the space $(\mathcal{A}(X), \theta^1, \theta^2)$ is weak pairwise T_0 .

COROLLARY 8. If a space (X, τ^1, τ^2) is pairwise T_1 and $\theta^i \supset \overline{\mathcal{J}}^i$ for i=1, 2, the hyperspace $(\mathcal{A}(X), \theta^1, \theta^2)$ is pairwise T_0 .

The proof of Theorem 2.3 of [10] gives in fact the following improvement.

PROPOSITION 12. If (X, τ^1, τ^2) is pairwise T_1 , $(\mathcal{K}(X), \mathcal{I}^1, \mathcal{I}^2)$ is weak pairwise T_1 .

PROPOSITION 13. If (X, τ^1, τ^2) is pairwise T_2 , $\theta \supset \overline{\mathcal{J}}^i$ and $\theta^j \supset \underline{\mathcal{J}}^j$ for $i, j \in \{1, 2\}$ and $i \neq j$, the space $(\mathscr{C}^i(X), \theta^1, \theta^2)$ is weak pairwise T_2 .

COROLLARY 9. If (X, τ^1, τ^2) is pairwise T_2 and $\sigma \subset \mathscr{C}^*(X)$, the space $(\sigma, \mathcal{I}^1, \mathcal{I}^2)$ is pairwise T_2 .

University of Auckland Auckland, New Zealand and

University of Belgrade, Belgrade, Yugoslavia

REFERENCES

- [1] Ch. Dorsett, T_0 -identification spaces and hyperspaces of R_0 and R_1 Spaces, Ann. Soc. Sci. Bruxelles 91 (1977), 200—206.
- [2] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152 -182.
- [3] M. Mršević, Local compactness in bitopological hyperspaces, Mat. Vesnik 3 (16) (31) (1979), 187-196.
- [4] _____, Some properties of the space 2^X for a topological R_0 -space, Uspekhi Mat. Nauk 34:6 (1979), 166—170, (Russian Math. Surveys 34:6 (1979), 188~193.
- [5] _____, On connectivity properties of bitopological hyperspaces, Mat. Vesnik 4 (17) (32) (1980), 33-44.
- [6] _____, On pairwise R_0 and pairwise R_1 bitopological spaces, (to appear).
- [7] I.L. Reilly, On pairwise R_0 spaces, Ann. Soc. Sci. Bruxelles 88 (1974), 293—296.
- [8] _____, On essentially pairwise Hausdorff spaces, Rend. Circ. Mat. Palermo, Ser], 25 (1976), 47-52.

- [9] M.J. Saegrove, Pairwise complete regularity and compactification in bitopological spaces, J. London Math. Soc. 7 (1973), 286-290.
- [10] R. Vasudevan and C.K. Goel, Separation axioms in bitopological hyperspaces, Ann. Soc. Sci. Bruxelles 89 (1975), 480—496.
- [11] M.R. Žižović, Some properties of bitopological spaces (in Serbocroatian), Mat. Vesnik 11 (26) (1974), 233-237.