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NUMERICAL QUADRATURES AND THEIR EFFECT ON THE
SOLUTION OF BOUNDARY VALUE PROBLEMS

By Hoon Liong Ong

1. Introduction

Consider the second order elliptic boundary value problem (Birkhoff [1],
Strang and Fix [9]), defined in an open domain @ with polygonal boundary
92 by

Lu=—V«(pFu) +qu=f in Q

{u=0 on 92 (1)
Under the assumptions p, ¢ are smooth functions and p}pmin>0, g=0 in Q,
the solution of problem (1) is equivalent to the solution of

(Lu, v)=(f, v) for all vEHé s (2)
where H:) is the space of all « in the Sobolev space H' with =0 on 3Q and
(-, +) is the inner product defined by (z, v):fauvdug.

The Ritz-Galerkin solution to (2) is to replace H' by a finite dimensional

n
subspace §" contained in H'. The elements of §” are of the form vhz‘z A @y
i=1

where ¢, are basis functions of $". In the finite element method, the region
Q is subdivided into a set r of finite number of disjoint regions, say triangle
elements, and the space §* consists of piecewise polynomials defined on the
elements in 7. An approximate solution to (1) can be obtained by solving the
following discrete finite element system (Bramble and Zlamal [2], Courant
[41)
(La®, 8)=(f,¢,) for all i=1,2,-,n. 3)

In general, the integrals F‘:(f » ¢,) may not be calculated exactly and hence
some numerical quadratures will be necessary to approximate these integrals.
Herbold and Varga [5] have proposed some quadrature schemes for the nu-
merical solution of a class of boundary value problems by variational technique
and investigated the errors introduced in the approximate solutions by such
quadrature formulas. In this paper we derive two numerical quadratures for
the load vector F; and analyze the errors introduced by these quadratures.
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Error bounds for the quadratures are expressed in term of the Sobolev sem-
inorm in the form ck'|f] s.,gr The order s and the constant factor ¢ of the

quadrature error are estimated. Experimental results for the two numerical
«quadrates are discussed in [7].

The barycentric coordinate system, which some engineers call the areal
-coordinate system, is one of the best local coordinate systems for a study of
the finite element method (Ciarlet [3], Strang and Fix [9]). In Section 2
we state the underlying notations and develop some fundamental results of
vector calculus in the barycentric coordinate system. In Section 3 two quad-
rature schemes for calculating the load vector F, are derived. Quadrature
-errors and their effect on the finite element solution of houndary value
problems using linear splines are analyzed tin Section 4. For simplicity, we
assume { can; be triangulated into uniform equilateral triangles and restrict
-our analysis to the uniform meshs only. The calculation can be generalized
to non-uniform meshes through affine transformation.

2. Notation and preliminaries

Denote by r a triangulation of Q, by @, the set of all vertices of triangles
‘T in 7, and by ﬁk the set of all interior nodes of Q,.

A linear operator L : Q,—R is called an g-local operator for some integer ¢
if the value of L _(v) at ¥£@Q, depends only on the values of y in a ¢-neighbour
-of z; more precisely, L, (y)=0 for all values of y in Q, with [z—y|>¢, where
|z—y| is the minimum number of edges connecting the two nodes z and y
along some sides of triangles in z, (see [8] for further detail).

Let T=A4,4,A, be a triangle in a polygonal domain Q. We will denote by
£, i=0, 1, 2 the three affine functions defined by the equation Et.(Aj):ﬁz.j,
where d is the Kronecker delta function. Since A, A4, A, are affinely
independent, any point x&Q can be uniquely represented as x:EU(x)A04—El (z)
Al*Ez(:r)Az, 601—81%62:1. We will refer to §p & 52 the barycentric coordi-
nates of x with respect to the triangle T:ADAlAz. Any polynomial of degree
7 on @ can be expressed uniquely as a homogeneous polynomial of degree =
in the barycentric coordinates with respect to a specific triangle 7=4.4 4,
in z, or else as a polynomial of degree » in any two of the coordinates.
Define the first order linear differential operators D, with respect to the
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<oordinate £; by

D.(§;)=0 and DI.(El.il)=$1.
That is, the counter clockwise normalized derivative of a function f in the
direction parallel to the side opposite A.

If f is a differentiable function mapping @ into R then we have ZD.f:D.

The differential operator can be extended to any order by D°f=D'DI'D}'f,
where a=(ay, a, a,)&N’, D’ and D} denote the identity operator. We denote

by |a|=a,+a +a, the order of D", Define du; and dp, as Lebesgue measure
.on T and @ normalized by frdﬂrzfndﬂn=1. If 2 isa polygon and ¢ is a
triangulation of @, then
Jof drg=X 1g(T) S f ity
In particular, if Q is an equilateral triangle of unit side length and 7 is an
-equilateral triangulation of 2, then ;ua(’l‘)zh2 for all triangles of side length

& in T,

Define dr as Lebesgue measure along the edge A. +1A: , of a triangle
Ai -1

T=A4,A A, normalized by d =1.

Some results for lines and surfaces integrals are given below.

LEMMA 2.1. Let f: T—R, sz exists on the side A:+1A:—1’ then

[t Df (2)dz=1(4; ) ~F(Ag4,)

LEMMA 2.2. [ gD fdr=(ef)(A;_) — €N (4s4))— [ tDgdz

Awl

LEMMA 2.3. [; Difdur=2 [ faz—2 [ 1"'faz

LEMMA 2.4. [, eDifduy=2 [ fyde— 2fAm

LEMMA 2.5(Holand Bell [6]).

f g1 *“2 o 5o18; 15,121
T (30+31+s2+2)!

Denote by Hk, k>0 the Sobolev space of real valued functions which to-
-gether with their generalized derivatives up to the £ order are square integrable

— _f; fDgdur
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over 2. A norm on a triangle T is given by IIHH,, 1,.={}{,‘|u|2. T}Uz, where
£l ;‘gk t:

o] . :{] IE .k_zifT(Dﬂu)zd’uT}m is the Sobolev semi-norm on the triangle T'.
? al =i

The Sobolev norm for H* can be represented as
lell =1, 2 g (Tl 71

3. Numerical quadrature formulas

For every interior node 3 of Q,, let qiﬁ be the trial function which equals
one at § and zero at all other nodes. These pyramid functions géﬁ form a

basis for the trial space Lol

The basis function ¢ﬁ(x) can be expressed as
T A .
8 0 otherwise
where H, is the hexagon formed by the six triangles in ¢ with the common
vertex 3 and Eﬁ is the barycentric coordinate of z with respect to any of the

triangles in H‘g.

In this section, we shall derive two quadratures for Fﬁ: fofgﬁ ﬁd*“n' The first
one 1s a 0-local operator while the second one is a 1-local operator. A 0-local
quadrature Fﬁ for the integral F)G is given by F‘ﬁ=af (3). The constant a can
be determined as follows:

j; o ﬂdpa—a:ﬁ.
It follows that
- a= [ 8edug=6uy(T) [r&dup=20y(T).
It is easy to verify that the 0-local quadrature is exact for all polynomials
of degrees less than or equal to 1.

To obtain numerical quadrature with higher order of accuracy, we require
the following lemma:

LEMMA 3.1. Let z J=1,2,---,6 be the siz vertices of a hexagon HJm and ¢ be

a quadratic polynomial which takes the value 1 along the edges z.x, and x.x and

1 4

vanishes along the line x,x_ of the hexagon H,_. Then

£g(T)
Jot9. drg=—2
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PROOF. Denote the barycentric coordinates of a point z€H, with respect
to the triangle Tj:xo‘”;‘zjﬂ by (& 7 #). Then the polynomial ¢ can be
represented in terms of the barycentric coordinates of x with respect to the

six triangles T, as follows:
& in T, and 7
G(E, ny £)={p"+2x+4° in T, and T,
7 in T, and T,
It follows that
[ sl g=4ug(T) [80° +5"+r)duy

N 2121 2121 . 2
”4”9(1")( 51 Bl +?)

_ #(T)
=0

From the result of Lemma 3.1, we observe that the 0-local numerical
quadratures F‘p=2pa(T) is not exact for all polynomials of degree 2. Now
we shall derive another quadrature which is exact for polynomials of higher

.degree.

Consider the 1-local quadrature F‘ﬁ=af(;3) +?ﬁ ZII 1f(;r’), the two parameters
.-

.2 and & can be determined as follows:
o6 pd1g—a—6b=0
Ja9 sdug—46=0.

2 #g(T) 3
It follows from Lemma 3.1 that &= Tand a=-2—,aa(T).

4. Quadrature errors and their effect on the numerical solution of boundary

value problems

In this section, we analyze the errors of the two quadratures derived in
‘Section 3 and discuss the effect of quadrature errors to the finite element
solution of the boundary value problems using linear splines.

For each ﬁeék let E(f, 8) denote the quadrature error Fﬂ—F‘ﬂ.

For simplicity, we denote by x, the centre § of a hexagon Hﬂ and by zp
j=1,--,6 the six vertices of Hﬂ.
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THEOREM 4.1. If fEH and Fy(£)=2p5(T) f(8), then

(5,1 EG 91 <[ D] K100

To prove the theorem, we need the following two auxiliary lemmas.

LEMMA 4.1. If fEH2 and P(E ) is a real valued function of A defined on each

of the trmngular elements T]——:z: AT +1’ then
f “P@E)D, , fdr= _§1 Jr, 52Dy Jaur,
PROOF. The result of the lemma follows from the decomposition of the
derivatives Dxiqu f into the sum of the two derivates D, f and D, f.

LEMMA 4.2. If fEHz, then the error of the 0-local numerical quadrature has

a representation of the form:

E(f, 8)=[of,dm,— 20 £(8)

- & & &858
_J-‘g‘uﬂ(T) fTJ(Ti—g__ 2 )D(}Gfd'u’f

PROOF. E(f, §)= o fbsdrng=2HS ()
6
=j‘=21p9 (7) [ﬁ“: fgﬂdﬂTj_ijf(Io) Eod'uT,-]

6
= Z1g(T) Jr, —£(8) 18 dur,

¢

: 3 0
= 2 g (1) Jr -£®)1[D32 6,8 dur,

It follows from Lemma 2.4 and the fact §, and £, vanish on T4 1% and zx 5

respectively that
6 X0
Bf, 8)= 2 po(T) S &(1=8) S ()da
+f A=) U=f@) e [, D(-5-858,)D, )
= z:,u,, T)|2 L g (S @) e+ L &EEDfi

- LO §8,8,Dy fdx M_I;.J_TeoglgzD wo g ,-]
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:j%yD(T)[_(EO 3)(f f(s))l —2f (-“_%)ijxqfd'r

=—#g(T) };' [f (‘5 __E) D, fdz +f 75 EzDoofd”TJ
It follows from Lemma 4.1 that the above equation gives Lemma 4. 2.

PROOF OF THEOREM 4.1. Application of the triangle inequality and the:

Cauchy-Schwarz inequality to the equation in Lemma 4.2, we get
.2 2 o g 1/2
B, 1< ZagM[ [, (FE-E-F888) duz] 1002z,

23 \2
() oD j§1”Doof 2,

It follows that
o 1E(, §) 1< a0 y(T) Z p,,('mzn Tl )

IS

<D Z; ﬂg(T)[E”D £ 2]

500 560 2

We observe that for each T=zzz,Ec and each i, the term |ID, /|27,

appears in the right hand side of the above inequality at most once; thus we:

have
11/2

(L 1EC, 9)19'< <[5 4] 5 (D) 2 E ID;; £1,2(7)]

23 1/2,2,
<[] H1N, o

LEMMA 4.2. If feH* and F‘g is the 1-local numerical quadrature of F., then

( 2o 1B, §))'<0.07208 (1, (T)) 8111,
S= ¥

To prove the theorem, we need the following auxiliary lemmas.

LEMMA 4.3. If fEH" and P()) is a real valued function of &, defined on each

of the triangular elements T SZYEL then,

2=6] [f P(§5) Dyqq fd‘r"Lj;P(En)Dmufdz]
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= 5 [ L pE) (D f~ LDy, N
_ji‘jlfnT (€9) (Dogoo f ~ 5 Loma N1,

PROOF. 5631 i} " P(8,) D,y fdr— | j P(8,) Dy, fia ]
6

=3 [f:’P(ea(—Dmf—nwofwx— [ PE) (~Dyo fD fdz]

= - 000 200

3

Xg Xj
-2 [ L (&) Dy fdz— fx (&) Dy Sz

w"fxo P(-‘fo)Dzucde_fxiP(Eo)Dmofd‘t]

Xj+1 B
o 6 ]. = ) x o Xj -
-z [ fTJTP(so) Dygoo Féier,+ | (e Dy Sz i P Dy, fdz]

We note that the derivative —D, f along z;z, with respect to T, is the
same as Dmf with respect to Tj* p and Dmf along Z; 1%, with respect to
TJ. is the same as _Duof with respect to Tj b1 Thus, these derivatives can

be divided into two equal parts, half of them will be added to the line
integral of the adjacent triangle. It follows that

% [inP(eo)Dzaofdx_Ljn P(E@)Dmofdx]

i=1
6 X
=y §1 [f TJ‘]Z"P (§4) Dgoqq / d”T;+f xm_%_ P(§) (Dyyy [+Dypy f)dz

xj l
—fxo TP(ED) (Dmo-ﬁ"Dlmf)dr]

6 1 X 1 .
= ;'=Z"1 [f T,TP (€9) Dygo0 / d‘“T.a—f A MTP(%) Dy, fdz
. PR
+f o —5-P(E)D,,, fdz]
which gives Lemma 4.3.

LEMMA 4.4. If fEH'i, then the error functional of the 1-local numerical quad-
rature has a representation of the form

6
E, 8= [ fosdig— (D) 5-S(8)+ &z f(z)]

7

=24#9(T) jgﬁ‘lf Tj[(%‘ﬁo_f;fﬁ%fﬁ% J )E‘EZ

07172
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g, &
- g -Beeln  f

Q000

T | Eu E L,
: T( £ +_ 3¢ ' E & )Domzf}
PROOF. We shall only give a brief proof for this lemma

E(f, 8

- 2 ; q PO(T) §
=[ [ f8 g2 18) |+ 2= BB S
6
= fa Fb dtg— 20 F(8) |+ g 11g(T) z f D, fdz
It follows from Lemma. 4.2 and Lemma 4.1 that
B¢, o= 3 Lo o

z /. (14128861~ 126,86, Dy, fdr,

which reduces to the followmg result

E(f, 8)= #"(T) ‘BE Uxo (—1—-2¢ +16¢

AN §,+ 166~ 1050)¢,D,  fdx

i s 11621023
+fx., (—1-28 +1662—1089)¢ D, fdz

£ 22 1083y (e. —
7 (T 126+ 168 —1060) (6,8, Dy S,
2.2
= IT!DO (E4€165) Dygq fd'“TI]
After further evaluation, we have

£, =10 B[ 5

L ) 1S g3

=1 W (_‘0 i 6;0 E +2 )Dzoofdx

Xo Ez

_ 0 3 13 .4
L;+L(ﬁ$uﬁ7+ﬁsu_7 ST )D fde

100
‘ 1 s _ge?
R T.«<T'_“'0 B, +5e 4605152)1:1»200000fdyn

It follows from Lemma 4.3 that the above equation gives Lemma 4.4

PROOF OF THEOREM 4.2. Applying the triangle inequality and the Cauchy-
Schwarz inequality to the equation in Lemma 4.4, we get

T
E(f, B)I< ”92(4’ 2, (el Do £ 1122,y €D 1127,

where ¢,=0.08495 and ¢, =0.04297. Applying the Cauchy-Schwarz inequality
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to the above inequality, we get
#o(T)
24

1/2

E(f, B I<

It follows that

¢ \ 6
L6‘§+6‘?)U2{j‘él(”DooooszchT,)+”Doo;zf“zz.2(r,-)“

3.1/2 ~ 1/2 § 2
(T > B 19)12<0.07208(2,(T)) ( Z;, #a(T) Z 1Dy f12¢r,

-f'“Dn‘:nz*’rllsz('I’s)][/2

for each T€z, since the terms ”Doonn 4 “2L2(T,) and HD0012 f |12L2(T,,) appear in:

the right hand side of the above inequality at most once, thus, we have
1/2

(Z; [EU,8)1%)"*<0.01208(5(T)'*( £ po(T) B 107 FIP 2"

=0.07208(1,(T)) "' 1 11, o

If the load vector Fﬁ=(f » 94 of (3) 1s approximated by a numerical quad-
rature F.ﬂ’ then we are solving

@*, 6)=F, peQ, )

where #"= ﬁEE Jﬁgéﬁ is a solution to the linear system (4).
&

From (4), we get
o ok _ =
It follows that
B B & b
W'~ &' ~2) T Rg=)E(, B)
which reduces to
h 2 -
=&l < X, 14,~2JIE, 81
By applying the Cauchy-Schwarz inequality to the right hand side of the-
above inequality, we get

2G5, (=29

(5, 1B AV )

=

To okbtain an upper bound for (ﬁ&a (25“13)2}1/2 in terms of the L® norm
=R

||u"—a"uL2mJ, we get the following lemma,

LEMMA 4.5. If u(:r)=ﬁ26 lﬁqiﬁ(x) vanishes on d2, then
.E ; 1
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2 1 2

PROOF. |lull%;2,0,= [p’dr,
; 2
=g(T) Z JrQbs+3,8,+28) duy
1 2, 42, 42 g ,
:T;zn(T) ngr(zﬂf27+2‘+2a2ﬁ—131‘71‘1ﬁ)
where 13, lr,}{‘ are the values of « at the three vertices of T=3rx.

Since 23+2+22+2(A, +4,2,+22)>0 for all 2,1, 1,ER, we have

=, (23—1-—1-*1 AAAAAII)> B (Ag 2+2) (6)
Since 2,=0 for all 330 and for each ﬁer, there are six triangles T in
7 with the common vertex 3. Thus the right hand side of the inequality (6)
can be written as 3 X, ;l;. It follows that
A=

2 1 2
s S8 !
20> #49(T) E, 75

Since «"—i" is a piecewise linear function on £ and vanishes on the bound-
ary 992, we can apply Lemma 4.5 to inequality (5) to get

h ol 2 2 1/2 2,1/2
=BGy ) 200y (2, | B 91

Since the energy norm || - [|, is equivalent to the Sobolev norm || -] 43 we
have

) ~h h
lla ")), >elle” —a"l|, g>cllu”—2
for some constant ¢>0. It follows that

), < —YZ (3. B¢, 8)1)
c(ug(T)) " F=H

k
122 g,

1/2

If the 0-local numerical quadrature is used, from Theorem 4.1, we have
23 /21 ,2
" ~2"11,<(5g5) oA Mlasg
and if the 1-local numerical quadrature is used, from Theorem 4.2, we have

"), < 02019 31y,

If « is the exact solution to Lz=f, from the triangle inequality, we get
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_h ~h bk
e — ||, <Ilwe—a"||,+ 1" 71|,

Since the energy norm Ilu—&kila has an order of accuracy 0(A%) [9], and the

-energy norm HukﬁﬁhH e has an order of accuracy 0(&2) and O(h4) for the 0-local
and 1-local numerical quadrature respectively, both numerical quadratures are
consistent in the energy norm. That is, the solution still has an order of
accuracy 0(h% in the energy norm for the 0-local and 1-local numerical quad-
ratures.
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