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ON THE SIMPLICITY OF REAL ROOTS OF REAL
POLYNOMIALS

By Uri Leyson

Introduetion: T. Craven and G. Csordas proved
THEOREM 1. ({1, Theorem 2.3]). Given h(2)=2 2", n=1, 840, b,=1,
=0

n
with only real roots and f(y) an arbitrary polynomial, form F(z, ¥)= kE b kaf L (.
=0

Each branch of the real curve F(x, y)=0 which intersects the y-aris will
intersect the y-axis in exactly one point and will intersect each vertical line x=c,
where ¢ is an arbitrary constant. If 6,=0, the conclusion still holds for all branches
which do not coincide with the y-axis. Furthermore, if two branches which cross
the y-azis intersect at a singular point (xo, yu) not on the y-axis, them these
branches are in fact components of the form ¥=5,=0, and thus coincide as horizontal
lines.

Throughout the present paper all the polynomials are supposed to have only
real coefficients. When we speak about “curve”, we always mean the real
part of an algebraic curve. In particular F(z, y)=0 denotes the curve in
Theorem 1. The meaning of the word “branch” is the same as in [1].

In Theorem 2 (a) we find sufficient conditions so that the polynomial

n
z b fm (z) has at least as many distinct real roots as f has. If, in addition
k=0

n
to the above conditions, f has only real roots, then X bkf (&) (z) has only real
kﬁ

simple roots. This is the result of Theorem 2(b). Then we get Corollary 1
which has special meaning in the light of [5]. In Theorem 3(a) and (b),

m mn
we apply to the polynomialskz k! akbk‘rk and k}: bkxkf m(x) the same method

n
as we have used for » b,/ (z) in Theorem 2(a) and (b). This generalizes
=0

[3, Theorem 6, pp.336-337].

In Theorem 3(c), we introduce a new curve having the same construction
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as F(z, ¥) =0. Moreover, its construction is invariant under certain perturbation.

Corollary 2 of Theorem 3 is very similar to the result of [2].

n
THEOREM 2. Let h(x) :k}j bk:tk be a polynomial with only real roots, bﬂbmiﬂ
=0

and let f(x):g akxk; (m<<n) be a polynomial with r real roots; then: (a) The
k=0

n
polynomial g(x):kz bkf(k)(:c) has at least r distance real roots.
=0
(B) If f has only real roots, then g has only real simple roots.
PROOF (b). 4, +#0 and m<n so deg(f)<deg(k); thus,

b, )

lgl oo g o
m

=b " +bmt" T b ml =p(e) (%)

(See [1, Theorem 3.1]) and the real roots of p(t} are the slopes of the
ssymptotoes of the branches of F(z, ) =0. If we assume that g has a root ¢
of multiplicity 2<s, then F(zx, y)=0 has s branches intersecting the y-axis
and meeting at the point (L, ¢). (See [1, Corollary 3.4]) From Theorem 1
it follows that these s branches coincide as horizontal lines. Therefore,
F(x, »)=0 has asymptotes with zero slope, i.e. p(0)=0. On the other hand, if
we put £=0 in (*), we get p(O):bmm! in contradiction to the conditions bm;tO
and 0<lm. This contradiction completes the proof of (b).

PROOF (a). Like in (b), (*) holds, and also F(z, ¥) =0 has r branches which
intersect the y-axis. Thus by Theorem 1. These r branches intersect the line
x=1. If we assume that two or more of the above branches meet at a point
(1, ¢), then like in (b) we get bm:U in contradiction to the assumption of
the Theorem.

COROLLARY 1. If we choose, in Theorem 2 (b), an €0 which is small enough,
n
then for every choice of 0<e,<e, k=0,1,2,-,7 the polynomial ¥, (b, +¢,) f(k)(x)
k=0
has only real roots. This result is significant in the light of [3].
EXAMPLE 1. The polynomials () =X (})o*= (14+2)" and f(x)=2" @<m<n)
k=0
: M
satisty the conditions of Theorem 2(b). So the polynomial g(x)= % (}) £ (2)
k=0

n ) )
= Z&:)(Z‘)k*:c * has only real simple roots although the polynomial f
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has only one multiple root at z=0. In this case we can check it in the:
following way. If we assume that g has a root ¢ of multiplicity 2<s, then
from [1, Corollary 3.4], it follows that ¢=0 (note: 2<<s<<m) so g(0)=0 but

g(m:(;; )m!frf:O.

n
THEOREM 3. Let h(z)=2X & 2 be a polynomial with only negative roots and let
k

fla) =k§0akxk (m=deg(f)<deg(h)=n) be a polynomial with r negative roots, s
positiue_raots and u roots at x=0. Then:

(a) Each of the polynomials kgok! a‘k&kar'E m!dkgo bka:kf(k) (z) has at least r nega-
tive distinct roots, at least s po;itiz:e distinct roots and exactly u roots at x=0.

m
(6) If f has only real roots, then each of the polynomials k}_,:Ok! akbkxkand

m
kE bkxkf(k) (z) has exactly u roots at x=0 and all their other roots are real and
=0

simple.
(¢c) If in addition to the condition (b) we assume f(0)%0, then there is such a

n
small ¢>0 that for any choice of 0<¢e,<e k=0,1,2,-,n the curvekE (5k+ak}xk
=0

¥ ) (0) f (&) (y) =0 has the same construction as F(z, y)=0.

PROOF (b). f has only real roots. As in [1, Corollary 3,4] F(z, y}=0 has
only branches which intersect the y-axis. Like in Theorem 2, (*) holds. If

m
we assume that F(z, 0) =kz,‘ k! akbkxk has a root ¢#0 of multiplicity 2<s’,
=0

then it follows that F(z, y)=0 has s" branches which intersect the y-axis and
meet at the point (¢, 0), 05£¢c. By Theorem 1, these s° branches coincide with
the z-axis i.e. p(0)=0. On the other hand, if we put z=0 in (*), we get
2(0)=m! & _so b =0. Since k has only negative roots, 5,20 for every £=0,
1,2,--,n in particular 4 >0. Therefore we obtain a contradiction. This com-

pletes the proof of Theorem 3(b) related to :Z k! akbkxk. The proof of The-
=0
m
orem 3 (b) related to kz bka:kf(k)(x) is similar to the above.
=0

PROOF (a). Corresponding to every negative root of f, F(z, y)=0 has a
branch intersecting the negative part of the y-axis and the negative part of
the z-axis. (See [1, Corollary 3.6]). Like in the proof of Theorem 3 (b),
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no pair among these r branches intersects each other on the =z-axis. Thus

F(z, 0) has at least r distinct negative roots. In the same way, we prove

that F(z, 0) has at least s distinct positive roots. Also it is clear that F(x, 0)

has exactly # roots at z=0. This completes the proof of Theorem 3 (a)
m

related to “‘ k! ab,x". The proof of Theorem 3 (a) related to ,... bx f(k)(x)

k=0
can be done in a similar way.

PROOF (c¢). The polynomial éok! akb&.rk has only real simple roots. There-
fore if we choose an e>0 which is small enough, then for every choice of
0<e,<e £=0,1,2,-,n the polynomial E k! a,(b,+ k)r has only real roots
whose number is m. Applying Theorem 1 to f(¥) andki‘:.‘ﬂle! ak(bk+sk):rk com-
plets the proof of (c).

REMARK. If in Theorem 3 % has only positive roots, then the results
related to E} k! akbkz:k still hold, but s and r exchange their roles. Moreover,
in case f (8.)-;f (0)=0, (c) still holds. Thus Theorem 3 (a) and (b) generalize
the second part of [3, Theorem 6, pp.336-337].

EXAMPLE 2. Let h(z)=(1+2)"= 5 (1)e* and let f(z)=(1+2)"=F ()"
k=0 k=0

(2<<m<n). By Theorem 3 (b) the polynomial g‘(x)=£‘ (g)(?)k* 2" has only
k=0

real simple roots. In fact, z"g(z~ —E( )( )k‘ 2™ *=the polynomial in
Example 1.
COROLLARY 2. If (ak)r;o' a;#0 or a,#0 is a multiplier sequence of the second
. : -~ B 1 n k .
kind, then the polynomial g, (z) ¥ §0———(”_ B (k)a L has only real simple roots for

every positive integer n.

n
PROOF. h(z)=(1+2)"=X (})2* has only negative roots and (z,);2, is a
! -

e
multiplier sequence of the second kind, so f(z)=J3(% )a,z* has only real roots
k=o\R/ Tk

and f(0)#0 or f(0)70. By applying Theorem 3 (b) to f and 2, we get

E R =m 2 @) o lgras
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