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COMMON FIXED POINTS 0 1' MAPPINGS AND SET-VALUED 

MAPPINGS ON METRIC SPACES 

By Brian Fisher 

[n the following, . s in [ 1], ( X , d) is a complete metric space and B(찌 1S 

the se t o f . 11 nonempty sutsets of X. The function ð (A , B) with A and B in 

8(X) is defined by 

δ (A ， B) = sup (d (o , b) : oEA , bεB} 

If A consists of • sing le point 0 、.\'e wnte 

0( .1 , 8) = ð(0 , ß) = ð(ß , a). 

[t follows easil y from the definition that 

ð(A , B)=o (B , A) > O, 
ð(A , B)<;;o(A , C) +ð (C , B) 

for all A , ß and C in B(X ) . 

Now let (An : 71= 1, 2, ... } l:e a sequence of nonempty subsets of X. We sa)' 

th.t the sequence (Anl c07lverges to the subset A of X if 

(i) each point a in iI is the limit of a convergent sequence (onεAn : n= l , 
:2, -.. ), 

(ll) for arbltrary e> 0, there exlSts an integer N such that Anc=A‘ for n> N, 
where A‘ is the union of .11 open spheres with centres in 1\ .nd r.dius f. 

A is then s.id to be the limit of the sequence (An}. 

T he fo llowing lemma “ as pr。、 ed in [1] . 

LEMMA If lAnl a”d lB” l are seque,lees of bout!kd subsets of a m”lPIete metric 

space (X, d) which converges to the bounded subsets A and B respectively, thell the 

sequel.α (ð (An , Bn )} c07lverges 10 o (A , B) 

Now let F be a m.pping of a complete metric space (X, d) into ß(X) 、νe

say that the mapping F is contimωus at the point x in X if whenever {Xn} is a 

s equence of pmins ln X converging to z , the sequence lFz,J in E(X) converges 

t o Fx in ß(X) . We say that F is. coμinous moppi7lg of X into B(X) if F is 

'Continous at each point x io X. V{e say that a point z in X is a fi x ed point 

O()f F if z is in Fz. 

We now prove the foll owing theorem. 
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THEOREM 1. Let F and G be 1llappings 0/ a complele metric space (X , d) …1(Þ 

B(X) and let 1 and J be maPPi껴gs 01 X into itselj satis!ying the inequality 

ð(Fx , Gy) ζc max{ d(Ix , Jy) , ð (Ix , Fx) , ð(Jy , Gy) j (1) 

/or all x , y in X, where 0ζ，<1. 11 the mappings F and 1 commute and tke 

maþpings G and J commute, if the range 0/ 1 contains the range 01 G aηd the 

range 0/ J contains the Ta l1ge 01 F and if J (or J) is cOJllinuous, tken F, G, 1 

and J have a unique commoll /ixed point z . Further , Fz = Gz= {z} and z is the 

u1UQue com끼011 /ixed point 0/ F, G, 1 and J 

PROOF. We let x=xo be an arbi trary point in X and define the sequence 

l%} inductively Having defined the pOlnt x2” we choose a po int z2n+l Vlth 

JX'n+ 1 in 2'n=Fx2n. This can be done since the range of J contains the range 

of F. Next choose a point X2n +2 with ]x 2n +2 in Z2n +l = Gx21J +1, which can be 

done since the range of 1 contains the range of G. Then using inequali ty (1). 

we have 

ð(Fx2n, Gx2n + l ) ζc max{d(Ix2n, Jx,n+l) , ð (lx 2n, Fx，끼)， ð(Jx,n+I' GX2η + ，H 

ζc max{ð(Gx2n_" Fx2n ) , ð(Fx2π’ GX'n+' ) j 

=cd(Gx._ ., Fx. J 2n-}' - -2n 

since lX2n is in Gx2n _ 1, JX2n +1 is in FX2n and ,<1 

Similarly 

and so 

for n= l ,2, ’ • 

ð(Gx2n _" F'x 2n) =ð(Fx2n , Gx2n _ l ) 

ζcõ(Fx2n_ 2' GX2n _ l ) 

ð(Fx2n , GxZII + 1 ) 길cò (Gx'n_" Fx2n ) 

<;c
2
'ò(Fxo' Gx,) 

Now for arbitrary ‘> 0 choose an integer N such tha t 
N 

그든τ o(Zo' 2 ,) <' 

Then lf z” lS an arbitrary pOlnt ln z” for ”=1, 2- --, lt follows that 

d(%m ’ z.) ζò(Zm ’ Zπ) <， 

for m, n> N. It follows that the sequence {%J is a Cauchy sequence in the 
n 

complete metric space X and so has a limit % in X, the point % being inde 

pendent of the particular choice of each z.' ln particular, the sequences {Ix,.J 
’ 
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cand [J.T,n+ l } will converge to z and further, the sequences of sets [Fx'n} and 

{Gx' n+l} will converge to the set {z} ‘ We will now suppose that the mapping 

I is continuous. Then noting that every sequence {Zn} , with :n ln Z”’ con-
2 

verges to z , it fo llows that the sequence {rx'n} converges to lz and the 

sequence {l Fx,’‘, = {FI.T,.l converges to {lz}. Using inequality (1) we have 

ö (FI x ' n’ CX，n + l) ζc max [d(I 'x,n’ Jx,n+I)' ö (l 'x,n' F1x2n), 
iJ (Jx,n+l' Gx2n+ I)}. 

Letting 11 tend to infinity and using the lemma we have 

d (Iz , z) <;cd(Iz , z) 

and it fo ll ows that lz = z. Further 

Ö(Fz , GX，n +l ) ζc max{d(Iz , Jx,n+l)' ö (Iz , Fz) , Ö(Jx'n +l' GX2n+ l)} 

Letting n tend to infinity it follows that 
Ö(Fz , z)ζcÖ(z ， Fz) 

and so Fz = (z). This means that z is in the range of F and since the range 
.of J contains the range of F there must exist a point z' in X such that 

Jz'=z 

and 50 

CJε=Gz=JCz' 

since C and J commute. Thus 

Ö (z , Cz') = ö (Fz , Gz’) 

<;c max(d(Iz , Jz') , Ö(1z, Fz) , ð(Jz' , Cε) } 
= cð(z , Cz’) 

and so Gz’ = {z }. On using equations (2) , it follows that Cz = (Jz). Thus 

ð(z, Cz) = ö(Fz , Cz) 

ζc max {d(Iz , Jz) , Ö(Iz , Fz) , Ö(Jz , Gz)} 

= cd(Iz , Jz) 

= cð(z , Cz) 

from what we have just proved and 50 

Gz = (z}={Jz}. 

(2) 

、.Ve have therefore proved that z is a common fixed point of F, G, 1 and J 

.and that Fz = Cz = {z}. The same result of course holds if J is continuous 

instead of 1. 

Now suppose that F, G, 1 and J have a second common fixed point 'lι Then 
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ð(Fw, Gw )<;c max{d(lψ , Jw) , ð (lw , Fw) , ð (Jw , Gw)} 

=c max{ð(ψ ， Fw) ， ð(w , Gψ) } 

ζcð(Fw ， Gw) 

Since c< I, it follows that 

ð(Fw , Gw)=O 

and so 

Fψ=Gψ= (wJ 

Thus on using inequality (1) we have 

d(z ， w)=δ (Fz ， Gw)<;cd(z , w) 

and so z is the unique common fixed point 01 F, G, J and J. T his completes 

the proof of the theorem 

The lollowing corollary follows immediately 

COROLLARY. Let F and G be mappings 0/ a comp!ete metric space (X, d) into 

B(X) satisfy…'g the inequality 

ð(Fx , Gy)ζc max{d(x , y) , ð(x , Fx) , ð(y , Gy) } 

for all x , y in X, where 0응c< l. Then F aηd G have a unique comnton fixed poin.t 

z. Further , Fz=Gz= {zJ aηd z is the uniqu!! common fixed þoitzt 0/ F aηdG‘ 

The result 01 this corollary was given in [2J ‘ 

THEOREM 2. Let F and G be mappings 0/ a complete metric space (X, d) ηto 

B(X) and let 1 and J be maPPi찌gs 0/ X into itself satisfying inequality (1) /or 

all x , y in X, where 0ζc<1. 11 the 1J1.aþpings F and 1 commute and the mappings 

G and J COlJl1Jlαte， if the range 0/1 contains the range 0/ G and the range 0/ J 
contains the ral땅e 0/ F, i/ F (or G) is continuous and i/ 

ð(Fx , Fx)등ð(x ， Fx) 

(or ð (Gx , Gx)ζð(x ， Gx) 

(3) 

(3') ) 
for all x , y in X, then F, G, 1 and J haνe a unique common fixed poiη Z . 

Further , Fz=Gz = {z} and z is tke uniqμe C01nmoη /ixed point 0/ F, G, J aηd J. 

PROOF. Define a sequence IxnJ as in the proof of theorem 1 50 that th~ 

5equence5 Ilx 2nJ and {JX2n+1J again converge to z and the sequence5 I F.ι2n} 

and IGx2n+
1
J converge to {z}. Supposing that F i5 continuous we see that the. 

sequences {FJx2n+
1
J and {FJx2nJ = IIFτ2n} converge to Fz. Thus 

ð(FJx2n+l' Gx2n+ 1 ) ζc max{d(JJx2n+1, JX2n+ l), å (IJx2n+ l' FJx2n+1) , 
ð(Jx2η + 1' GX2n+l)} 
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';;;c max {ð(l Fx,n’ JX,n+l) , ð(lFx'n’ FJx,n+l) , ð(Jx2n+1, GX2n +1)) , 
since JX2n+1 is in FXzn and so IJx2n+1 is in IFxzno Letting n tend to inlinity 

and using the lemma we have 
ð(Fz, z) ζc ;max{ð(Fz, z ) , ð(Fz , Fz) , d(% , z)} 

= cð (Fz , z ) 

because of inequality (3) . It follows that F%= {z}. This means that z is in 

the range of F and 50 again there exists a point %’ such tha t Jz’ = z anð 
equations (2) are satisfied. Further 

ð(FJx'n+l' Gz’ )ζc m,x{d(]Jx 2n+1, Jz ’), ð(lJx2H1 , FJx,n+l) , ð(Jz' , Gz')} 

ζc ,maxl6(IFx2”, :), a(IFx2”’ FJx'n +l ) , ð(z , Gz' )) ‘ 

Letting " tend to infinity it follows from what we have just proved that 

ð(z , Gz' ) ζcð(z ， Gz’) 

and 50 Gz'= (z J. From equations (2) we now see that Gz = (Jz J. Further 

ð(Fx'n' Gz) ';;;c max(d(Ix2n, Jz) , ð(Ix 2n, Fx 2n) , ð(Jz , Gz)) . 

Letting n tend to infinity it follows from what we have just proved that 

ð(z , Gz)ζcð(z ， Gz) 

and so Gz= (z) = (Jz). The point % is therefore in the range of G and since 
the range of 1 contains the range of G there ex ists a point z ’ in X such tha t 

lz ’ = z . Thus 
ð(Fz끼 z) = ð(Fz’ , Gz) 

';;;c max{d(lz ’ , Jz) , ð(lz ’ , Fz’), ð(Jz , Gz)) 

= cð(z , Fz’) 

and so Fz’ = (z) . It follows that 
Flz ’ = Fz = (z ) = IFz" = {lz) ‘ 

We have therefore proved that z is a common fixed point of F, G, 1 and J. 

The same result holds if G is cont inuous instead of F. That z is the unique 

common fi xed point of F, G, 1 and J follows as in the proof of theorem 1 

This completes the proof of the theorem. 

T HEOREM 3. Let S, T , 1 and J be mappings of a comp/ete lIUl ric space (X, d). 

illto itsell satisfying the inequality 

d(Sx , Ty)ζc max{d(Ix , Jy) , d (Ix , Sx) , d (Jy , Ty)) 

lor all x , y in X, where 0< ,<1. 1/ tke maþpings S and 1 commute and the 

mappings T and J commute, if the range 0/ 1 contains tke range 01 T and the 

range of J contains the range 0/ S and i/one 0/ the mappillgs S, T , 1 and J is 

co씨inuous， t ken S, T , 1 and J have a unique common / ixed point z. Further , z 
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;is the unique cornmon fixed point 0/ S and 1 aηd of T and J 

PROOF. Define set.valued mappings F and G on X by 

Fx = {Sx} , Gx= {Tx} 

for all x in X. If 1 (or J) is confinuous then the conditions of theorem 1 are 

satisfied and it follows that S, T , I and J have a unique common fixed point z. 

If F (or G) is continuous then inequality (3) (or inequality (3')) is trivially 

satisfied and so the conditions of theorem 2 are satisfied. It again follows 

that S, T , 1 and J have a unique common fixed point z. 

N。κ suppose that T and J have a second common fixed point ψ Then 

d(z , w) = d(Sz, Tw) 

길c max {d {Iz , Jα) ， d{Iz , Sz) , d {Iw , Tw’) } 

= cd(z , w). 

The uniqueness of z follows 

Similarly z is the unique common fixed point of S and 1. This completes 

the proof of the theorem ‘ 

For an example to see that z is not necessarily the unique common fixed 

point of F and 1 and of G and J in theorems 1 and 2, see the example given 

in [2] for the particular case when 1 and J are the identity mappings. 

It is possible that the condition that inequality (3) (or (3')) can be omitted 

from theorem 2, but examples are easily found to show tha t the other 

conditions of theorems 1 and 2 cannot be omitted 

，~re finally prove a theorem for compact metric spaces 

THEOREM 4. Let F and G be contiηuous mappings 0/ the compact metric space 

(X, d) into B(X) a l1 d let 1 and J be continuous maPPiη'gs of X into itselj satisfying 

the inequality 

ð(Fx , Gy) < max{d{Ix , Jy) , ð(Ix , Fx) , ð(Jy , Gy )} (4) 

for all .1', y in X for which the right-hand sîde 0/ the inequality is þositive. lf 

the maPþings F aηd 1 commute aηd the maþþings G and J commute aηd if the range 

0/1 contains the raηge of G aηd th~ range 0/ J contains the range 0/ F, theη F, 
G, 1 and J have a μnique common fix ed point z. Further , Fz = Gz = {z} and z is 

the unique common /ixed point 0/ F, G, 1 aηd J , 

PROOF. Suppose first 01 all that the right.hand side of inequality (4) is 

positive for all x , y in X. Define the function f(x , y) on Xx X by 



Common Fixed Points 01 Mappings 41 

f(x, y) 
a(Fx , Gy) 

max {d(Ix , Jy) , ð(I x , Fx) , ð(Jy , 퍼1) I . 

Then if {(xn ' yn)) is an arbitrary sequence in X x X converging to (x, y) , it 

follows easily from the lemπa that the sequence !f(xn , Yn) I converges to 

f(x , y). The function f is therefore a continuous function defined on the 

compact metric space X x X and 50 achie、 es its rr. aximum value c. lnequality 

(4) implies that c< 1 and it follows that the conditions of theorem 1 are 
satisfied. Hence F, G, 1 and J ha、 e a unique common fixed point z. Now 
suppose that the right-hand side of inequality (4) is zero for 50me _~， y in χ 

Then 
Fx = Gy= {Ixl = {Jyl 

is a singleton' {zl and so 

F 2x= Flx = IFx= {lzl 

is al50 a singleton. If h =f=z then 

d(IZ , z) =6(F2z , Gy) 

<max{ð (IF.ι ， Jy) , 6(IFz , F2z) , 6(Jy , Gy)} 

= d(Iz , z). 

giving a cα.tradiction . It follows that 
(hl = {z} =Fz 

and so z is a common fixed point of F and 1 

Similarly, we can prove that G and J have a commOn fixed point z'. If 

z -=/=-z’ we have 

d(z , z’ ) =ð(Fz , Gz') 

< max {d(h , Jz') , ð(Iz , Fz l, ð(Jz’ , Gz’) } 

= d(z , z') 

giving a conradict ion. It follcws tl:at z = z' is a common fi xed point of F, G, 
1 and J. Finall y suppose that F, G, 1 and J ha、 e a second d istinct COffimon 

f ixed point w. Then if F，ψ=f= {w} or Gw=f= {w} 

iJ (Fw , Gw) < max {d(Iw , Jw) , ð(I w , Fw) , iJ (Jw , Gw) } 

<ß(Fw , Gw) , 
since Iw= Jw=w is in Fw and Gw, gîving a contradiction. Thus Fw = Gw= { t씨 

and so 

d(z , w) =ð(1'z , Gw) < d (z , "11.’) , 
giv ing a contradicticn. The uniqueness of z follmλ S‘ This completes the proof 

.of the theorem. 
The following corollaries follow easily. 
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COROLLARY 1. Let F and G be continuous mappings of the compact metric space

(X , d) into B(X) satisfying the inequality 

ð(Fx , Gy) < max{d(x , y) , ð(x , Fx) , ð(y , Fy)} 

for all x , y in X 끼or which the right-haηd side of the inequality is positive. Then

FandGhaνe a umqz.‘e commoη fixed point z ‘ Further , Fz = Gz= {z} and z is tM 

unzqμe commoη fixed point of F and G 

COROLLARY 2. Let S , T , 1 and J bε contznμous maPPings 01 a compact m~tric 

space (X, d) into itself satisfy…'g the ineqαality 

d(Sx , Ty) < max{d (1x , Jy) , d (I x , Sx }, d(Jy , Ty)} 

for all x , y in X for ，ιhich the right-hand side 01 the in'!quality is positiνe. 1f the 

mapPiη'gs S and 1 commute and the mappings T aηd J commute and if the range 0/ 
1 contains the range 0/ T and the range 0/ J contains the range 0/ S, theη S , T , 
1 aηd J haνe a ιntqιe comm 'Jn /ixed point z . Further , z is the unique com11lOη 

fixed point of S and 1 αnd of T and J 
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