Kyungpook Math. J. Volume 25, Number 1 June, 1985

QUOTIENT ADDITIVE PROPERTIES IN TOPOLOGICAL SPACES

by Norman Levine

1. Introduction

Suppose that R is an equivalence relation on a space X and [x] and X/R are compact for each x in X. If the projection map $p: X \rightarrow X/R$ is closed, then X is compact. See theorem 4.2.

This result is not new. This paper is concerned with the more general question: If R is an equivalence relation on a space X and if P is a topological property, does X have property P when X/R and [x] have property P for each x in X?

We will call P a quotient additive property when the answer is in the affirmative.

The following properties are shown to be quotient additive: indiscreteness, discreteness, T_0 , T_1 , connectedness, total disconnectedness and singleton path components.

The following properties fail to be quotient additive even when $p: X \rightarrow X/R$ is an open map: Lindelof, countable compactness, extremally disconnected and cofinite.

The following properties fail to be quotient additive even when $p: X \rightarrow X/R$ is both open and closed: paracompact, metacompact, Hausdorff, regular and normal.

The following properties fail to be quotient additive even when $p: X \rightarrow X/R$ is closed: second axiom, separable, metrizable and path connected.

If $p: X \rightarrow X/R$ is closed, the following properties are shown to be quotient additive: Lindelof, countably compactness and (if X is first axiom) sequential compactness.

In section 5, $X \times Y$ is shown to be a fixed point space if X is a T_1 fixed point space and Y is strongly separable (see definition 5.1).

2. General properties

We begin with

THEOREM 2.1. If X/R and [x] are indiscrete for each x in X, then X is indiscrete.

PROOF. Suppose that $0 \neq 0 \neq X$ and O is open in X. Then for each x in X, $[x] \subseteq 0$ or $[x] \cap 0 = \phi$ since [x] is indiscrete. Let $O^* = \{[x] : [x] \subseteq 0\}$. Then $0 \neq 0^* \neq X/R$ and O^* is open in X/R, a contradiction.

THEOREM 2.2. Let X/R be discrete and let [x] be discrete for each x in X. Then X is discrete.

PROOF. $\{x\}$ is open in [x] and [x] is open in X since $\{[x]\}$ is open in X/R. Thus $\{x\}$ is open in X.

THEOREM 2.3. Let X/R be a T_0 -space and let [x] be a T_0 -space for each x in X. Then X is a T_0 -space.

PROOF. Let $x \neq y$. Case 1. $[x] \neq [y]$. Then we can assume that there exists an open set O^* in X/R such that $[x] \in O^*$ and $[y] \notin O^*$. Then $x \in p^{-1}[O^*]$ and $y \notin p^{-1}[O^*]$. Case 2. [x] = [y]. Then there exists an open set O in X such that $x \in O \cap [x]$ and $y \notin O \cap [x]$. Then $x \in O$ and $y \notin O$.

THEOREM 2.4. Let X/R and [x] be T_1 -spaces for each x in X. Then X is a T_1 -space.

PROOF. Modify theorem 2.2.

We note that neither T_2 nor T_3 nor T_4 nor T_5 may be substituted for T_1 in theorem 2.4 (see example 3.9).

THEOREM 2.5. Let X/R and [x] be connected for each x in X. Then X is connected.

PROOF. Suppose that $X=O \cup V$ where O and V are nonempty disjoint sets in X. Then $x \in O$ implies that $[x] \subseteq O$ and $y \in V$ implies that $[y] \subseteq V$. Let $O^* =$ $\{[x] : x \in O\}$ and $V^* = \{[y] : y \in V\}$. Then $X/R = O^* \cup V^*$ and O^* and V^* are disjoint nonempty open sets in X/R, a contradiction.

THEOREM 2.6. Let X/R and [x] be totally disconnected for each x in X. Then X is totally disconnected.

PROOF. Let $A \subseteq X$ and suppose that A has more than one point. Case 1. $A \subseteq [x]$ for some x in X. Then A is disconnected since [x] is totally disconnected. Case 2. $A \subseteq [x]$ for no x in X. Then p[A] contains more than

one point in X/R and hence is disconnected. It follows then that A is disconnected.

THEOREM 2.7. Let X/R and [x] have singleton path components for each x in X. Then X has singleton path components.

PROOF. Let $f:[0, 1] \rightarrow X$ be continuous. We will show that f is a constant. Now $p \circ f:[0, 1] \rightarrow X/R$ is a constant and hence $f[[0, 1]] \subseteq [x]$ for some x in X. Since [x] has singleton path components, f is a constant.

3. Some examples

The next two lemmas will be useful for counterexample purposes.

LEMMA 3.1. Let $W = X \times Y$ and let $W/R = \{A_x : x \in X\}$ where $A_x = \{x\} \times Y$. Then W/R is homeomorphic to X and A_x is homeomorphic to Y for each x in X.

PROOF. Let $p: W \to X$ via p((x, y)) = x and let $q: W \to W/R$ via $q((x, y)) = A_x$. Let $h: W/R \to X$ via $h(A_x) = x$. Then h is clearly bijective and $h \circ q = p$. Since q and p are quotient maps, h is a homeomorphism.

That A_{x} is homeomorphic to Y is well known.

LEMMA 3.2. Let $X=I \times I$ Where I=[0, 1] and let X have the dictionary order topology. Let $X/R=\{A_x : x \in I\}$ where $A_x=\{x\} \times I$. Then A_x is homeomorphic to I for each x in X and X/R is homeomorphic to I.

PROOF. Let $p: X \to I$ by p(x, y) = x. p is clearly continuous and onto, and since X is compact and I is hausdorff, $p: X \to I$ is a closed map and hence a quotient map. Let $q: X \to X/R$ by $q(x, y) = A_x$. Since X/R is given the quotient topology, $q: X \to X/R$ is a quotient map. Let $h: X/R \to I$ by $h(A_x) = x$. As in lemma 3.1, h is a homeomorphism.

DEFINITION 3.3. A property p will be termed *finitely nonproductive* if the product of two spaces with property p need not have property p.

THEOREM 3.4. Let p be a finitely nonproductive property. If X/R and [x] have property p for each x in X, then X need not have property p even if $p: X \rightarrow X/R$ is open.

PROOF. Use lemma 3.1.

COROLLARY 3.5. Let p be any one of the following properties: Lindelof, count-

Norman Levine

ably compact, paracompact, extremally disconnected, normal or cofinite. If X/Rand [x] have property p for each x in X, then X need not have property p even if $p: X \rightarrow X/R$ is open.

PROOF. All of the above properties are finitely nonproductive.

COROLLARY 3.6. Let X, X/R and [x] be as in lemma 3.2. Then X/R and [x] are separable, second axiom, metrizable and path connected. X has none of these properties and $p: X \rightarrow X/R$ is closed.

EXAMPLE 3.7. Let $X = \{x: 0 \le x \le 1 \text{ or } 1 \le x \le 2 \text{ and } x \text{ is rational}\}$. Let Y = [0, 1] and let $f: X \to Y$ as follows: f(x) = x if $0 \le x \le 1$ f(x) = x - 1 if $1 \le x \le 2$. Let X have the usual topology and let Y have the quotient topology. For each y in Y, $f^{-1}[y]$ is a singleton set or a doubleton set and hence is compact, locally connected and sequentially compact. Y also has all of these properties. X has none of these properties.

EXAMPLE 3.8. Let $X = \{a, 1, 2, \dots, n, \dots\}$ and let a subset of X be open iff it is empty or contains a. Let R be the equivalence relation whose equivalence classes are $[a] = \{a\}$ and $[1] = \{1, 2, \dots, n, \dots]$. Now [a] and [1] are paracompact and metacompact. X/R is a two point space and hence is metacompact and every open cover has a locally finite open refinement. But $\{\{a, x\} : x \text{ in } X\}$ is an open cover of X with no refinement which is locally finite or point finite. Note that p: X/R is both open and closed.

EXAMPLE 3.9. Let $X = \{a, b, 1, 2, 3, \dots, n, \dots\}$ and let a subject A of X be open iff $A \cap \{a, b\} = \phi$ or $A \cap \{a, b\} \neq \phi$ and CA is finite, C denoting the complement operator. Let $[a] = \{a, b\}$ and $[n] = \{n\}$ for $n = 1, 2, \dots$. Then X/R is homeomorphic to $\{0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\}$ with the usual topology and $p: X \rightarrow X/R$ is both open and closed and X/R and [x] are T_2 , T_3 , T_4 and T_5 . X has none of these properties.

4. $p: X \rightarrow X/R$ closed

When $p: X \rightarrow X/R$ is a closed map, certain covering properties are well behaved.

We begin with a well known property of closed maps.

LEMMA 4.1. Let $f: X \to Y$ be a closed map and let $f^{-1}[y] \subseteq O$, O being an open set in X. Then there exists an open set U in Y such that $y \in U$ and $f^{-1}[U] \subseteq O$.

32

Quotient Additive Properties in Topological Soaces

PROOF. Let $U = \mathscr{C}f[\mathscr{C}O]$.

THEOREM 4.2. Let $p: X \rightarrow X/R$ be closed and let X/R and [x] be compact for each x in X. Then X is compact.

PROOF. See [2], theorem 5.3, page 236 or modify the proof of the next theorem.

THEOREM 4.3. If $p: X \rightarrow X/R$ is a closed map and if X/R and [x] are Lindelof for each x in X, then X is Lindelof.

PROOF. Let $X = \{O_{\alpha} : \alpha \in \mathcal{A}\}$ where O_{α} is open in X. Since [x] is a Lindelof space, there exists a countable set $\mathcal{A}([x]) \subseteq \mathcal{A}$ such that $p^{-1}[[x]] = [x] \subseteq \bigcup \{O_{\alpha} : \alpha \in \mathcal{A}([x])\}$. By lemma 4.2, there exists an open set U([x]) in X/R such that $[x] \in U([x])$ and $p^{-1}[U[x]] \subseteq \bigcup \{O_{\alpha} : \alpha \in \mathcal{A}([x])\}$. Since X/R is Lindelof, X/R = $\bigcup \{U([x]_i) : i \ge 1\}$ and thus $X = \bigcup \{O_{\alpha} : \alpha \in \bigcup \{\mathcal{A}([x]_i) : i \ge 1\}\}$.

THEOREM 4.4. If $p: X \rightarrow X/R$ is a closed map and if X/R and [x] are countably compact for each x in X, then X is countably compact.

PROOF. Let $\{E_n : n \ge 1\}$ be a sequence of closed sets with the finite intersection property. We may assume that $E_n \supseteq E_{n+1}$ for all n. Now $\{p[E_n] : n \ge 1\}$ is a sequence of closed sets in X/R with the finite intersection property. Since X/R is countably compact, there exists a [x] in X/R such that $[x] \in \bigcap \{p[E_n] : n \ge 1\}$. Then $\{[x] \cap E_n : n \ge 1\}$ is a sequence of sets closed in [x] with the finite intersection property and since [x] is countably compact, $\bigcap \{p[x] \cap E_n : n \ge 1\} \neq \phi$. Thus $\bigcap \{E_n : n \ge 1\} \neq \phi$ and X is countably compact.

COROLLARY 4.5. If $p: X \rightarrow X/R$ is closed and if X/R and [x] are sequentially compact for each x in X and if X is a first axiom space, then X is a first axiom space.

PROOF. X/R and [x] are countably compact for each x in X. Then X is countably compact by theorem 4.4 and hence X is sequentially compact since first axiom is assumed.

5. A fixed point theorem

We first note that $X \times Y$ need not be a fixed point space when X and Y are fixed point spaces. See [1].

Using some of the earlier ideas, we will give a sufficient condition for

33

 $X \times Y$ to be a fixed point space.

DEFINITION 5.1. A space X will be called *strongly separable* iff there exists a point x^* in X such that $X=c(\{x^*\})$ and $x\neq x^*$ implies that $\{x\}$ is closed. c denotes the closure operator.

EXAMPLE 5.2. Let X be a set and $x^* \in X$. Let $\mathscr{T}_1 = \{0 \subseteq X : 0 = 0 \text{ or } x^* \in 0\}$. Let $\mathscr{T}_2 = \{0 \subseteq X : 0 = 0 \text{ or } x^* \in 0 \text{ and } \mathscr{C}0 \text{ is finite}\}$. Let \mathscr{T}_3 be any topology on X for which $\mathscr{T}_2 \subseteq \mathscr{T}_3 \subseteq \mathscr{T}_1$. Then (X, \mathscr{T}_3) is strongly separable.

LEMMA 5.3. Let X be a strongly separable space with distinguished point x^* . Then X is a fixed point space.

PROOF. Let $f: X \to X$ be continuous. If $f(x^*) = x^*$, we are done. So assume that $f(x^*) = y \rightleftharpoons x^*$. Then $f(y) \in f(c(\{x^*\})) \subseteq c f[\{x^*\}] = c(\{y\}) = \{y\}$. Thus f(y) = y.

LEMMA 5.4. Let X be a space and $\{A_{\alpha} : \alpha \in \Delta\}$ a partition of X. Suppose further that for each $\alpha \in \Delta$, there is a point x_{α} in X such that $A_{\alpha} = c(\{x_{\alpha}\})$. If $f : X \to Y$ is continuous and $\alpha \in \Delta$, there exists a $\beta \in \Delta$ such that $f[A_{\alpha}] \subseteq A_{\beta}$.

PROOF. Let $f(x_{\alpha}) \in A_{\beta}$. Then $f[A_{\alpha}] = f[c(\{x_{\alpha}\})] \subseteq c f[\{x_{\alpha}\}] \subseteq c A_{\beta} = A_{\beta}$.

THEOREM 5.5. Let X be a T_1 -fixed point space and let Y be a strongly separable space with distinguished point y^{*}. Then $X \times Y$ is a fixed point space.

PROOF. Let R be the equivalence relation induced by the partition $\{\{x\} \times Y : x \in X\}$. Note that $\{x\} \times Y = c(\{(x, y^*)\})$. Now let $f : X \times Y \to X \times Y$ be continuous and let $f/R : (X \times Y)/R \to (X \times Y)/R$ be the map induced by lemma 5.4. f/R is continuous. By lemma 3.1, $(X \times Y)/R$ is homeomorphic to X and hence is a fixed point space. There exists then an x in X such that $f/R(\{x\} \times Y) = \{x\} \times Y$. Then $f|\{x\} \times Y : \{x\} \times Y \to \{x\} \times Y$ and since $\{x\} \times Y$ is a fixed point space, f(x, y) = (x, y) for some y in Y.

The Ohio state University Columbus, Ohio 43210 U.S.A.

REFERENCES

^[1] Robert F. Brown, The fixed point property and cartesian products, American Mathematical Monthly, Volume 89, No.9. November 1982, 654-678.

^[2] James Dugundji, Topology, Allyn and Bacon Inc., Boston, 1966.