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QUOTIENT ADDITIVE PROPERTIES IN TOPOLOGICAL SPACES

by Norman Levine

1. Introduction

Suppose that R is an equivalence relation on a space X and [z] and X/R
are compact for each z in X. If the projection map p : X—+X/R is closed, then
X is compact. See theorem 4.2,

This result is not new. This paper is concerned with the more general
question: If R is an equivalence;relation on a space X and if P is a topological
property, does X have property P when X/R and [z] have property P for
each z in X?

We will call P a quotient additive property when the answer is in the
affirmative.

The following properties are shown to be quotient additive: indiscreteness,
discreteness, T, T,, connectedness, total disconnectedness and singleton path
components,

The following properties fail to be quotient additive even when » : X—X/R
is an open map: Lindelof, countable compactness, extremally disconnected
and cofinite,

The following properties fail to be quotient additive even when p: X—»X/R
is both open and closed: paracompact, metacompact, Hausdorff, regular and
normal.

The following properties fail to be quotient additive even when p: X—X/R
is closed: second axiom, separable, metrizable and path connected.

If p: X>X/R is closed, the following properties are shown to be quotient
additive: Lindelof, countably compactness and (if X is first axiom) sequential
compactness.

In section 5, XxY is shown to be a fixed point space if X is a T, fixed
point space and Y is strongly separable (see definition 5.1).

2. General properties

We begin with
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THEOREM 2.1. If X/R and [z] are indiscrete for each x in X, then X is
indiscrete.

PROOF. Suppose that 0O+#0=X and O is open in X. Then for each z in
X, [2]Z0 or [z]NO0=¢ since [x] is indiscrete. Let O*={[z] : [z]C0}. Then
‘0-£0*+X/R and O* is open in X/R, a contradiction.

THEOREM 2.2. Let X/R be discrete and let Tx] be discrete for each x in X.
Then X is discrete.

PROOF. {z} is open in [z] and [z] is open in X since ([z]} is open in X/R.
Thus {x} is open in X.

THEOREM 2.3. Let X/R be a T,-space and let [x] be a T ,-space Sor each zx in
X. Then X is a To—space.

PROOF. Let x#v. Case 1. [x]#[y]. Then we can assume that there exists
an open set O* in X/R such that [zr]€0* and [»]#0* Then z&p '[0*] and
y@éPil_’O‘]. Case 2. [x]=[»]. Then there exists an open set O in X such that
20N [z] and y#£O0N[2z]. Then €0 and y&£0.

THEOREM 2.4. Let X/R and [z] be T ~spaces for each x in X. Then Xis a
Tl-space.

PROOF. Modify theorem 2.2.

We note that neither T, nor T, nor T, nor T, may be substituted for T!
in theorem 2.4 (see example 3.9).

THEOREM 2.5. Let X/R and [z] be connected for each x in X. Then X is
connected.

PROOF. Suppose that X=0V where O and V are nonempty disjoint sets
in X. Then =0 implies that [z Z0 and y=V implies that [y]EV. Let O*=
{[z] : 260} and V*={[y] : &V}. Then X/R=0*JV* and O* and V* are
disjoint nonempty open sets in X/R, a contradiction.

THEOREM 2.6. Let X/R and [x] be totally disconnected for each x in X. Then
X is totally disconnected.

PROOF. Let ACX and suppose that A has more than one point. Case
1. AC[z] for some z in X. Then A is disconnected since [z] is totally
disconnected. Case 2. AC[z] for no z in X. Then p[A] contains more than
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one point in X/R and hence is disconnected. It follows then that A is discon-
‘nected.

THEOREM 2.7. Let X/R and [x] have singleton path components for each x in X.
Then X has singleton path components.

PROOF. Let f: [0, 1]—X be continuous. We will show that f is a constant.
Now pof: [0, 11— X/R is a constant and hence f[[0, 1]]C[z] for some z in
X. Since [z] has singleton path components, f is a constant.

3. Some examples

The next two lemmas will be useful for counterexample purposes.

LEMMA 3.1. Let W=XXY and let W/R= (A, : z€X} where A, ={z} ®Y. Then

W/R is homeomorphic to X and A_ is homeomorphic to Y for each x in X.

PROOF. Let p: W—X via p((z, ¥)) =z and let ¢ : W—-W/R via ¢((z, »))=A4,.
Let 4: W/R—X via h(Ax):.r. Then % is clearly bijective and hog=p. Since
-q and p are quotient maps, 4 is a homeomorphism.

That Al is homeomorphic to Y is well known.

LEMMA 3.2. Let X=Ix1 Where I=[0, 1] and let X have the dictionary order
topolegy. Let X/Rz{Ax 1 2€1} where A ={x}xXI. Then A is homeomor phic to 1
Sor each z in X and X/R is homeomarphic to 1.

PROOF. Let p: X—] by plz, y)==z. p is clearly continuous and onto, and
since X is compact and [ is hausdorff, p: X—/ is a closed map and hence a
quotient map. Let ¢ : X—>X/R by ¢(z, y)=A_. Since X/R is given the quotient
topology, ¢:X—X/R is a quotient map. Let A: X/R—I by h(A)=z. Asin

lemma 3.1, & is a homeomorphism.

DEFINITION 3.3. A property p will te termed finitely nonproductive if the
product of two spaces with property p need not have property p.

THEOREM 3.4. Let p be a finitely nonproductive propery. 1f X/R and [z] have
property p for each x in X, then X need not have property p even if p: X—X/R

is open.
PROOF. Use lemma 3.1.

CCROLLARY 3.5. Let p be any cne of the following properties: Lindelof, count-
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ably compact, paracompact, exiremally disconnected, normal or cofinite. If X/R

and [x] have property p for each z in X, then X need not have property p even if
p: X>X/R is open.

PROOF. All of the above properties are finitely nonproductive.

COROLLARY 3.6. Let X, X/R and [2] be as in lemma 3.2, Then X/R and [z]
are separable, second axiom, metrizable and path connected. X has none of these
properties and p: X—X/R is closed.

EXAMPLE 3.7. Let X={z:0<2<1 or 1<z<2 and =z is rational}. Let Y=
[0. 1] and let f: X—Y as follows: f(z)=z if 0<a<<]l flz)=2—1 if 1<z<2.
Let X have the usual topology and let ¥ have the quotient topology. For
each y in Y, [ 1[_y] is a singleton set or a doubleton set and hence is compact,
locally compact, locally connected and sequentially compact. Y also has all of
these properties. X has none of these properties.

EXAMPIE 3.8. Let X={q,1,2,---,n,+-} and let a subset "of X be open iff it
is empty or contains 2. Let R be the equivalence relation whoss equivalence
classes are [a]={a} and [1]=(1,2, -, 7,---]. Now [a] and [1] are paracompact
and metacompact. X/R is a two point space and hence is metacompact and
every open cover has a locally finite open refinement. But {{e, 2} : 2z in X}
1s an open cover of X with no refinement which is locally finite or point
finite. Note that p : X/R is both open and closed.

EXAMPLE 3.9. Let X={a,5,1,2,3,--,7,---} and let a subject A of X be open
iff AN{a, bl=2 or AN{a, 8}#5 and ZA is finite, ¥ denoting the complement
operator. Let [a]=/{a, &) and [#]=(n} for n=1,2,---. Then X/R is homeomor-
phic to 10, 1,—;13-,---,71{,---} with the usual topology and p : X—X/R is both open
and closed and X/R and [z] are T, T, T, and T. X has none of these
properties,

4. p: X X/R closed

When p: X—X/R is a closed map, certain covering properties are well
behaved.

We begin with a well known property of closed maps.

LEMMA 4.1, Let f: X—Y bz a closed map and let fql[y] Z0, O being an open
set in X, Then there exists an open set U in Y such that y&U and Fuco,
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PROOF. Let U=%f[#0].

THEOREM 4.2. Let p: X—+X/R be closed and let X/R and [z] be compact for
each x in X. Then X is compact.

PROOF. See [2], theorem 5.3, page 236 or modify the proof of the next
theorem.

THEOREM 4.3. If p: XoX/R is a closed map and if X/R and [z] are Lindelof
Jor each x in X, then X is Lindelof.

PROOF. Let X={0, : a&4} where O, is open in X. Since [z] is a Lindelof

space, there exists a countable set 4([2])C4 such that p~ '[[z]]=[2]ZU {0,:
a=4([z])}. By lemma 4.2, there exists an open set U{[z]) in X/R such that
[z]€U([x]) and p_][U[xj];U {O‘z rae=d([z])}. Since X/R is Lindelof, X/R=
ULU([2],) : i1} and thus X=U{O_: a€lU (4([2],) : i=1}}.

THEOREM 4.4. If p: X5 X/R is a closed map and if X/R and [z] are countably
compact for each x in X, then X is countably compact.

PROOF. Let {E :n>1} be a sequence of closed sets with the finite inter-
section property. We may assume that ESE, for all n. Now {p[E,] : n=1}
is a sequence of closed sets in X/R with the finite intersection property.
Since X/R is countably compact, there exists a [z] in X/R such that [z]&E
N [p[Eﬂ] :a>1). Then {[xjﬂEn tn>>1} is a sequence of sets closed in [x] with
the finite intersection property and since [z] is countably compact, [ {[z](
E :nzl}7¢. Thus M{E, : n>1)7#¢ and X is countably compact.

COROLLARY 4.5. If p: X0 X/R is closed and if X/R and [x] are sequentially
compact for each x in X and if X is a first aziom space, then X is a first axiom
space.

PROOF. X/R and [x] are countably compact for each z in X. Then X is
countably compact by theorem 4.4 and hence X is sequentially compact since
first axiom is assurned.

5. A fixed point theorem

We first note that XxY need not be a fixed point space when X and Y are
fixed point spaces. See [1].
Using some of the earlier ideas, we will give a sufficient condition for
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XY to ke a fixed point space.

DEFINITION 5.1. A space X will be called strongly separable iff there exists
a point z* in X such that X=c({z*}) and z#2* implies that {z} is closed. ¢
denotes the closure operator.

EXAMPLE 5.2. Let X be a set and x*€X. Let .7 =(0=X:0=0 or z*<0}.
Let 7 ,={0&X: 0=0 or z*<=0 and 0 is finite}. Let F be any topology on
X for which 7, =7, C.5 . Then (X, .7,) is strongly separable.

LEMMA 5.3. Let X be a strongly separable space with d'stinguished point z*.
Then X is a fized point space.

PROOF. Let f: X—X be continuous. If f(z*)=2%, we are done. So assume
that f(z*) =y3z*. Then f(y)Ef(c({z*}))=c fllz*}]=c({y}) = (y}. Thus f(y)=».

LEMMA 5.4. Let X be a space and {4,: a=4d) a partition of X. Suppose further
that for each a=4d, there is a point x, in X such that A =c({z}). If f: XY is
continuous and a =4, there exists a SEA such that fl4,]1EA g

PROOF. Let f(z,)EA4, Then f[A,]=/fle(lz,})]Se fllz, ) ]S A=A,

THEOREM b5.5. Let Xbe a Tlffz':ced point space and let Y be a strongly separable
space with distinguished point v*. Then XX Y is a fixed point space.

PROOF. Let R be the equivalence relation induced by the partition {{z}
Y : 2€X}. Note that [z} < Y=c({(x, »*)}). Now let f: XxY—-XxY be contin-
uous and let f/R: (XXY)/R—(XxY)/R be the map induced by lemma 5.4.
Jf/R is continuous. By lemma 3.1, (XxY)/R is homeomorphic to X and hence
is a fixed point space. There exists then an z in X such that f/R({{z}xY)=
{z)xY. Then fl{z}XY: (z)XY—>([z}XY and since (z}xY is a fixed point
space, f(z, y)=(z, ») for some y in Y.
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