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QUOTlEl\T ADDITIVE PROPERTlES 1:\1 TOPOLOG ICAL SPACES 

by Norman Levine 

1. Int roduction 

Suppose tha t R is an equi valence re lat ion on a space X and [xl and XjR 

are compact fo r each x in X. lf the projection map Þ : X• .Y.j R is ciosed. then 

X is compac t. See theorem 4.2 

Th is result is not new. T his paper is concerned w ith the more genera) 

quest ion: If R is an equivalence;relation on a space X and if P is a topolog ical 

property. does X ha',e pro;>erty P when Xj R and :xl have pwperty P for 

each x in X ? 

\Ve will call P a quot ient additive prope rty when the answ"er is in the 

affi rmative. 

The following propert ies are shown to be quotient additive : ind iscreteness, 
discreteness, To' T

J
, connectedness, total d isconnectedness and singleton path 

componen ts 

The following properties fail to be quotient add itive even when p : X- .Xj R 

is an open map: Lindelof. countable compactness. extremall y d isconnected 

and cofinite. 

The following properties fail to be quotient additive even when Þ : X-.Xj R 

is both open 뻐d ciosed: paracompact, metacompact , Hausdorff, regular and 
normal. 

The follow ing properties fa il to be quotient addi t ive even when Þ : X- .X/R 

is c1osed: second axiom , separable , metrizable and path connected 

If þ: X• X/R is c1osed. the following properties are shown to be quotient 

add itive: Lindelof. countabl y compactness and (if X is first axiom) sequential 

compactness 

In section 5, Xx Y is shown 10 be a Iixed point space if X is a T I fixed 

poin t space and Y is strongly separable (see de finition 5.1 ) 

2. Gcneral propertíes 

、，'Ve begin with 
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THEOREM 2. 1. If X/R alld [x] are indiscrete for each x in X, then X is 

;ndiscrete 

PROOF. Suppose that O=/=O=/=X and 0 is open in X. Then for each x in 

X, [xJ 드o or [x ] n O= q; since [x] is indiscrete. Let 0* = { [x ] : [x] 드O}. T hen 

‘O=/=O* =/= XIR and O' is open in XIR , a con trad ict ion 

THEOREM 2.2. Let X/ R be discrete and let [x ] be discrete for each x i,’ x 
Then X is discrele. 

PROOF. {x} is open in [xj and [.~] is open in X since {[x]} is open in X/ R 

Thus {xl is open in X 

T HEOREM 2.3‘ Let X/ R be a T o- space and let [.~] be a T o- space f or each x α 

X. Thell X is a To- sþace. 

PROOF. Let x =/=y. Case 1. [x j =1= [y] . Then we can assume that there ex ists 

an open set 0 ‘ in X/R such that [x] EO' and [y] 종O‘ T hen xEþ -, [0*] and 

y$.P - 1 [0 ‘ ] . Case 2. [x ] = [y ] . The n there exists an open se t 0 in X such that 

xEO이[뇌 and y풍on[뇌 ‘ Then xEO and yξO 

THEOREM 2.4. Let X/ R alld [x ] be T ,-sþaces for each x ill X. Theη X is a 

TI - sþace 

PROOF. Modify theorem 2.2 

씨'e note that neither T , nor T
3 

nor T, nor Ts may be substituted for T , 
in theorem 2. 4 (see example 3.9). 

THEOREM 2.5. Let X/ R aηd [:rJ be COfllztcted /or each x in X. T hen. X is 

connected 

PROOF. Suppose that X = O u V where 0 and V are nonempty disjoint sets 

in X. Then xEO implies that [x:드o and yEV implies that :y]드 V. Let 0' = 

{ [x j ‘ xEO} and V*= {[y ] : yEV}. Then X/ R = O‘ U V‘ and 0 ‘ and V* are 

disjoint nonempty open se ts in X!R , a contradict ion 

THEOREM 2.6. Let X/ R and [x J be tota l/y disco끼ucted 끼or each x in X. Then 

X is totally discOJlllected. 

PROOF. Let I1드X and suppose t hat A has more than one poin t . Case 

1. AÇ [xl for some x in X. Then A is disconnected since [x l is totally 

disconnected. Case 2. AÇ [x] fo r no x in X. Then p [A] contains more than 



Quotient Additive Proþertres in TOþolgical Soaces 31 

o{)ne point in X/R and hence is disconnected. Jt follows then that A is d iscon. 

nected 

THEOREM 2. 7. Let X/R and [상 have sÎ lIglet(;n path COl1ψonents fOT each x Îll. X. 

Then X has singleton path comþonents 

PROOF. Let f : [0, l J • X be continuous. \òVe wi II show that f is a constant 

Now pof : :0, 1] • X!R is a constant and hence f [[O, 1 :] 드 [x ] for some x in 

X. Since [x ] has singleton l'ath components, f is a constan t. 

3. Some examples 

The next two lernrnas will be usef비 for counterexample purposes. 

LE:VIMA 3. 1. Let W = X x Y and let W/ R = {A. : xεXI where A. = (xl x Y. Then 
X 

\V/ R is homeomorphic to X and A_ is homeomorphic to Y /or each x in X. x 

PROOF. Let p: W• X via p((x, y)) = x and let q: \v• W / R ‘ ia q( (x , y)) = A,. 
Let " : W!R• X via h(A,l =x‘ Then h is c1early bijective and hoq= p. Since 

.. q and p are quotient maps, h is a homeomorph ism 

That Ax is homeomorph ic to Y is we ll known. 

LEMMA 3.2. Let X= I x l Where 1= [0, 1] aηd let X haνe the dictionary order 

topology. Let X/R = {A . : xE f} where A.= !xl x l. Then A. is ho""ollωrphic to 1 x 

꺼'or each x in X and χ/R is homεo1Jlorphic to J 

PROOF. Let p ‘ X• / by p(x, y) = .~. P is c1 early continuous and on to, and 

since X is compact and 1 is hausdorff, p: X- ./ is a c10sed map and hence a 

quotient map. Let q: X• X/R by q (x, y) =,\ . Since X/ R is g iven the quotient 

topology, q: X• X!R is a quotient n:ap ‘ Let h: X/R-I by h(A,l =ι As in 

Jemma 3. 1, h is a homeomorphism 

DEFIN lTION 3.3. A property p w ill te ter;ned f initely nonþroductive if the 

product of two sl'aces with property p need not have prope rty p ‘ 

THEOREM 3.4. Let p be a f initely nonprodllctive propery. /f X/ R and [x ] haνe 

property p for each x in X, then X need t1.ot have ρroþerty p et'ell if p: X• X/ R 

is opeπ. 

PROOF. Use lemma 3. 1. 

COROLLARY 3.5. Let p be any αe 01 the foilo wilzg properties: L indelof , count. 
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ably C01，π.þ:u:t ， paraζ'Jmþ.:lα ， extremally disconn!!cted, nOT11lal or co/inite. 1/ X/R 

a찌 [x] have property p for each x in X , then X need ηot have property p even if 

p: X• X!R is opeη. 

PROOF. AIl of the above properties are finiteJy nonproductive. 

COROLLARY 3. 6. L.t X, X/ R and [x ] be as in lemm. 3.2. Then X/ R and [x] 

are separable, second axiom, metrizable and path connected. X has none 0/ these­

properties and Þ : X• X/ R is closed, 

EXAMPLE 3.7. Let X={x: O<x< 1 or l <x< 2 and x is rationa l}. Let Y= 

[0. 1] and let f: X• Y as follows: f( x) =x if O ';;; xζ 1 f(:r) =x- l if 1 < x < 2. 

Let X have the usual topoJogy and Jet Y have the quotient topoJogy. For 

each y in Y, f-l[y] is a singJeton set or a doubleton set and hence is co:npact, 
Jocally compact, Jocally connected and sequentially compact. Y also has all of 

these properties. X has none of these properties. 

EXA써PIE 3. 8. Let X= {a , I, 2,"', n,"'} and }et a subset :of X be open iff it 

is empty Qr contains Q. Let R be the equivalence relation whose equivalence 

c1asses are [a] = {a} and [1] = {l, 2, ‘ ,n, ‘ ] . Now [a] and [1] are paracompact 

and metacompact. X/ R is a two point space and hence is metac:>mpact and1 

every open cover has a locally finite open refineπ.en t. But {{a , x} : x in X} 

is an open cover of X with no refinement which is JocaIly f inite or point 
finite. Note that p χ! R is both open and cJosed 

EX.tιI?LE 3.9. Let X= {a,b,1,2,3,"', n,"'} and Jet a subject A of X be open 
iff A n {a, b} = jJ or A n {a , b} 1=:þ and ~.4 is finite , ~ denoting the compJement 
。perator. Let [이 = {a ， b} and [n] = {시 for n=1 ,2,… . The ::J X/ R is homeomor. 

phic 10 !0, 1, 융 용， ... ) with the usuaJ to;>obgy 삐dp:X→X/ R is both o;>en 

and cJosed and X/R and [x] are T
2
, T

3
, T, and T

5
• X has none of these 

properties. 

4. p: X - ,X! R cIosed 

When p: X• X/ R is a cJosed map, certain covering properties are weJl 
beha\'ed 

We begin with a weJJ kn。、써1 property of cJosed maps. 

LE,;nL'\ 4. 1. Let f: X- ,Y be a closed maþ and tet f- l [y]드0， 0 being an open‘ 

set in X. Then there exists al1 open set U in Y such that y ,=U and f-l [ U]드O. 
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PROOF. Let u='6"f ['6"O] 

THEOREM 4.2. Let p : X• X/R be closed aπd let X/R aηd [x ] be co’npact for 

each x in X. Then X is compact 

PROOF. See [2], theorem 5.3, page 236 or modify the proof of the next 

theorem. 

THEOREM 4.3. Jf P : X• X/R is a closed map and if X/R and [x ] are Lindelof 

for each x in X, then X is Lindelof 

PROOF. Let X= !O. ‘ aEJ) where 0. is open in X. Since [x] is a Lindelof 

space, there exists a countable set J(냐J ) 드J such that p-I[[xJJ= [xJ 드 U {Oa : 

αEJ( [x])} ‘ By lemma 4.2, there exists an open set U( [xJ) in X/R such that 

[xJεU( [x]) and p-I [U[x ]];::;U {O_: aεJ([xJ )). Since X/R is Lindelof, X/R = 
a 

U{U([z]t) : t> 1} and thus X=U{Oa aεU{J( [xJ ‘) : i;;d}} 

THEOREM 4.4. Jf p: X • X/R is a closed map and if X/ R and [x J are couηtably 

compact /or each .t' in X, then X is countably compact 

PROOF. Let {En : n> l) be a sequence of closed sets with the finite inter­

sect !On property‘ We may assume that En극En+ 1 for alJ n. Now {P[ EnJ : π>1) 

is a sequence of c10sed sets in X/ R with the finite intersection property. 

Since X/R is coun tabJy compact, there exists a [x] in XlR such that [xJE 

n {P[ En ] η> 1 ) . Then { [xJn En η능1) is a sequence of sets c10sed in [x J with 

the finite intersection property and since [x J is countably compact, n {[x ] n 
En : n ?d}*φ Thus n {En ‘ n> I} *Ø and X is countably compact 

COROr:LARY 4.5. Jf P : X• X/R is closed and if XlR and [xJ are sequentially 

compact for each x in X aηd if X is a first axiom space, then X is a fir st axiom 

space. 

PROOF. X/R and [x J are countabJy compact for each x in X. Then X is 

countably compact by theorem .4.4 and hence X is sequentiaJJy compact since 

first axiom is assumed 

5. A fixed point theorem 

We first note that Xx Y need not be a fixed point space when X and Y are 

fixed point spaces. See [IJ. 

Using some of the earlier ideas, we will give a sufficient condition for 
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X x Y to be a fixed point space. 

DEFINITION 5. 1. A space X wiU be called strongly separable iff there exists 

a pomt x ‘ in X such that X = c{{x*)) and x * x ‘ implies that {x) is c10sed ‘ c 

denotes the closure operator. 

EXA~1PLE 5.2. Let X be a set and .~‘EX. Let 3'! = (OÇ X: 0=0 or x*EO) 

Let 3' ，= {O드X: 0=0 or x'εo and ~O is finite). Let 3'3 be any topology on 

X [or ψhich 3'，드3'3드3' !' Then (X, 3') is strongly separable 

LDß1A 5.3. Let X be a strongly seρarable space with d :stingιshed þJù1t x ’ 
T hen X is a fixed poillt space 

PROOF. Let J: X• X be continuous. If J (x ‘ ) = x. , we are done. So assu :ne 

that J (x*) = y";x ‘ Then J(y) EJ(c( {x*)))드c !l [x‘) ] = c{{y)) = [y ). Thus J (y) = y 

LE'νIMA 5. 4. Let X be a space and {A_ : aEL1) a partition oJ X. Suppose Jurther a 

that Jor each a드L1， there is a point xa ’n X such that Aa= c{{x.}) . IJ J : X• Y is 

continuous and aεL1， there exists a (3 E L1 such that J[A.J드Aβ 

PROOF. Let J(x.) 드Aß' Then J [A.l = J [c( [x.}) 1 드c J[ [xJ l드c A , =A β a~ " "-~'-a"~-- "L'-aJ~-- "(1 '013' 

THEOREM 5. 5. Let X be a T 1• fixed point space aηd let Y be a strongly separable 

space with distinguished þoint y*. Then. Xx Y is a /ixed point space. 

PROOF. Let R be the equivalence relation induced by the partition 1 [x) x 

Y: xEX}. Note that [x} x Y= c( {(x, y‘)}). Now let J: X x Y•X. X Y be contin­

uous and }et J IR: (Xx Y) IR• (X x Y) IR be the map induced by }emma 5.4 

J IR is continuous. By }emma 3.1, (X x Y) IR is homeomorphic 10 X and hence 

is a fixed point space. There ex ists then an x in X such that JIR ([ x) x Y) = 

[x} X Y. Then J I [x} x Y: [x} x Y• {x} X Y and since [x} x Y is a fixed point 

space , J(x, y) = (x, y) for some y in Y. 
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