가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究)

An experimental study of the strength and internal structure of solder joint of fixed partial denture

  • 박상남 (조선대학교 치과대학 보철학교실) ;
  • 계기성 (조선대학교 치과대학 보철학교실)
  • 발행 : 1985.12.01

초록

The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

키워드