A Note on the Ring $I_{k/k}$ of Integers

by

Dong-Uk Ko

Throughout this paper we assume that

Z=the ring of all integers, Q=the rational field C=the complex field,

Moreover, we assume that K and k are number fields such that (k:k)=n and (k:Q)=m and that I_k is the ring of integers of k. The purpose of this paper is to define the ring $I_{k/k}$ of integers of k/k (Definition 1) and to prove that ① $I_k=I_{k/k}$ (Theorem 3) ② $I_{k/k}$ is a Dedekind integral domain (corollary 6). As is well known I_k is a Dedekind integral domain and thus I_k has the unique factorization property with respect to prime ideals. (**)

Let k be an extension field of k with (k:k)=n. (Note that the complex filed $C \supset K \supset k \supset Q$ and (k:Q)=(k:k) (k:Q)=mn).

Definition 1. If $\alpha \in \mathbb{R}$ satisfies

$$\alpha^r + \alpha_1 \alpha^{r-1} + \cdots + \alpha_{r-1} + \alpha_r = 0 \quad (\alpha_i \in I_k, i = 1, \dots r)$$

then α is called an algebraic integer of k over k. $I_{k/k}$ denotes the set of all algebraic integers of k over k.

Definition 2. Let $k=k(\theta)$ and let $f(x)=X^n+\alpha_1 X^{n-1}+\cdots+\alpha_{n-1} X+\alpha_n(\alpha_i)$ and i=1,n be a minimal polynomial of θ . Let us denote the conjugate elements of θ by

$$\theta = \theta^{(1)}, \ \theta^{(2)}, \dots, \theta^{(n)},$$

then $f(\theta^{(i)}=0 \text{ for } i=1,\dots,n$. We put $K^{(i)}=k(\theta^{(i)})$ for $i=1,\dots,n$. Each $\alpha \in K$ has a unique representation

$$\alpha = \alpha_0 + \alpha_1 \theta + \cdots + \alpha_{n-1} \theta^{n-1} (\alpha_i \in k, i = 0, \dots, n-1).$$

We define the algebraic conjugates of α by

$$\alpha = \alpha^{(1)} = d_0 + d_1 \theta^{(1)} + \dots + \alpha_{n-1} \theta^{(1)^{n-1}}$$

$$\alpha^{(2)} = \alpha_0 + \alpha_1 \theta^{(2)} + \dots + \alpha_{n-1} \theta^{(2)^{n-1}}$$

$$\vdots$$

$$\alpha^{(n)} = \alpha_0 + \alpha_1 \theta^{(n)} + \dots + \alpha_{n-1} \theta^{(n)^{n-1}}.$$

(Note that if $\alpha \in k$ then $\alpha^l = \cdots = \alpha^{(n)} = \alpha$.). The norm $N_{k/k}$ α and the trace $T_{k/k}$ α of α are defined by

$$N_{k/k} \alpha = \alpha^{(1)} \cdots \alpha^{(n)}, T_{k/k} \alpha = \alpha^{(1)} + \cdots + \alpha^{(n)},$$

respectivelly.

Theorem 1. We have the following properties about $I_{k/k}$.

- (i) $I_{k/k}$ is an integral domain.
- (ii) $\forall \alpha \in K \exists m (\neq 0) \in Z$ such that $m\alpha \in I_{k/k}$.
- (iii) $I_{k/k}$ is integrally closed, *i,e.*, if $\alpha \in K$ satisfies $\alpha^r + \alpha_1 \alpha^{r-1} + \dots + \alpha_{r-1} \alpha + \alpha_r = 0$ ($\alpha_i \in I_{k/k}$, $i = 1, \dots, r$) then $\alpha \in I_{k/k}$.
- (iv) $I_{k/k} \cap k = I_k$
- (v) For $\alpha \in I_{k/k}$ $N_{k/k}\alpha$, $T_{k/k}$ $\alpha \in I_k$

Furthermore, the algebraic conjugates $\alpha = \alpha^{(1)}, \dots \alpha^{(n)}$ α of α are also algebraic integers over k, i.e, $\alpha^{(1)}$ is an algebraic integer of $K^{(i)}$ over k for $i = 1, \dots n(\alpha^{(i)} \in I_k^{(i)})$.

Proof (i): We shall prove that $\lambda \in I_{k/k} \leftrightarrow \mathcal{I}\eta_1, \dots, \eta_n \in K$ such

that (i)
$$\eta_i \eta_i \in I_1 \eta_1 + \cdots + I_n \eta_n$$
 (i, $j=1, \cdots n$)

(2)
$$\lambda \in I_{\bullet} \eta_1 + \cdots + I_{\bullet} \eta_n$$

Suppose $\lambda \subseteq I_{k/k}$, then there exist $\alpha_i \subseteq I_k$ such that

$$\lambda^r + \alpha_1 \lambda^{r-1} + \cdots + \alpha_{r-1} \lambda + \alpha_r = 0$$
.

Thus, put $\lambda^{r-1} = \eta_1, \dots, \lambda = \eta_{r-1}$ and $1 = \eta_r$, then

$$\eta_i \eta_j = \lambda^{2r - (i+j)} = \begin{cases} \eta_{i+j-r} & \text{if } i+i > r \\ b_1 \eta_1 + \cdots b_m \eta_r & \text{if } i+j \leq r \end{cases}$$

where b_i $(i=1,\dots r) \in I_k$. That is, $\eta_i \eta_j \in I_k \eta_1 + \dots + I_k \eta_r$, Next,

$$\lambda = - \longrightarrow \lambda \in I_{1} \eta_{1} + \cdots + I_{1} \eta_{n}$$

Conversely, suppose $\lambda \in I_{k}\eta_{1} + \cdots + I_{k}\eta_{n}$. By our assumptions ① and ②

$$\lambda \eta_i = \sum_{i,j}^n c_{ij} \eta_j \ (c_{ij} \in I_k).$$

Define the $N \times N$ -matrix $c = (\delta_{ij}\lambda - c_{ij})_{i,j} = 1 \cdots N$

$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}$$

In this case:

$$C \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_N \end{pmatrix} = \begin{pmatrix} \lambda - C_1 & -C_{12} & \cdots & -C_{1N} \\ -C_{21} & \lambda - C_{22} & \cdots & -C_{2N} \\ \vdots & \vdots & \ddots & \ddots \\ -C_{N1} & -C_{N2} \lambda & \cdots \lambda - C_{NN} \end{pmatrix} \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_N \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

If det $C \neq 0$ then there exists the inverse C^{-1} and we have

$$\begin{pmatrix} \eta_I \\ \vdots \\ \eta_N \end{pmatrix} = C^{-1}C \begin{pmatrix} \eta^I \\ \vdots \\ \eta_N \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

In consequence, $\eta_1 = \cdots = \eta_N = 0$ and $\lambda = 0$. If det C = 0 then λ is a root of the following equation

$$\begin{vmatrix} \lambda - C_{11}, \dots - C_{12} \dots - C_{1N} \\ \vdots \\ - C_{N1} \dots \lambda - C_{NN} & \lambda - C_{NN} \end{vmatrix} = 0 \quad (C_{ij} \subseteq I_k)$$

and thus $\lambda \in I_{k/k}$.

We shall prove (i) by using the above result. Take $\alpha, \beta \in I_{k/k}$, then

$$\alpha \in I_k \eta_1 + \dots + I_k \eta_N$$
, $\eta_i \eta_j \in I_k \eta_1 + \dots + I_k \eta_N$
 $\beta \in I_k \zeta_1 + \dots + I_k \zeta_M$, $\zeta_i \zeta_i \in I_k \zeta_1 + \dots + I_k \zeta_M$.

where η_i , $\zeta_i \in K$ for $i=1,\dots, N$ and $j=1,\dots, M$. Since

and

$$\alpha \pm \beta_i \alpha \beta \in I_k \eta_1 + \dots + I_k \eta_N + I_k \zeta_1 + \dots + I_k \zeta_M + I_k \eta_1 + \dots + I_k \eta_N \zeta_M$$

it follows that $\alpha \pm \beta$, $\alpha \beta \in I_{k/k}$. Thus $I_{k/k}$ is a commutative ring. It is clear that $I \in I_{k/k}$, and thus $I_{k/k}$ is an integral domain.

(ii): Let $X^r + \alpha_1 X^{r-1} + \dots + \alpha_{r-1} X + \alpha_r (\alpha_i \in k, i=1,\dots, r, r \leq n)$ be a minimal polynomial of $\alpha \in K$ orer k. As in (2) there exist non-zero rational integers $m_1, \dots m_r$ such that

$$m_1\alpha_1, \dots, m_r\alpha_r \in I_s$$

Put $b_0 = m_1 m_r$ ($\subseteq Z$) then α is a root of

$$b_0 X' + \beta_1 X^{r-1} + \cdots + \beta_{r-1} X + \beta_r = 0.$$
 $(\beta_i \in I_i, i = 1, \dots r),$

where $\beta_1 = b_0 \alpha_1, \dots$, and $\beta_r = b_0 \alpha_r$, i, e.,

$$b_0\alpha_r + \beta_1\alpha^{r-1} + \cdots + \beta_{r-1}\alpha + \beta_r = 0.$$

Thus, we have

$$(b_0\alpha)^r + \beta_1b_0(b_0\alpha)^{r-1} + \dots + \beta_{r-1}, b_0^{r-2}, (b_0\alpha) + b_0^{r-1}, \beta_r = 0.$$

If we put $\beta_1 b_0 = \gamma_1, \dots, \beta_{r-1} b_0^{r-2} = \gamma_{r-1}, b_0^{r-1} \beta_r = \gamma_r$ then $b_0 \alpha$ is a root of

$$X^r + \gamma_1 X^{r-1} + \cdots + \gamma_{r-1} X + \gamma_r = 0$$
, $(\gamma_i \in I_k, i = 1, \dots, \gamma)$,

and thus $b_0 \alpha \in I_k$.

(iii) Suppose α∈K satisfies

$$\alpha^r + \alpha_1 \alpha^{r-1} + \cdots + \alpha_{r-1} \alpha + \alpha_r = 0 \quad (\alpha_i \in I_{k/k}, i = 1, \dots, \gamma.)$$

Since $\alpha_i \in I_{k/k}$ we have some positive rational integer N, such that

$$\alpha_i^{N_i} = -(\beta_i \alpha_i^{N_i-1} + \cdots + \beta_{N_i-1}, \alpha_i - \beta_{N_i}) \quad (\beta_i \in I_k, i = 1, \dots, N_i)$$

Put $\alpha_i^{N_{i-1}} = \eta_{ii}$, ..., $\alpha_i = \eta_{iN_{i-1}}$ and $1 = \eta_{iN_j}$, then

$$\eta_{ij}\eta_{ik} \in I_k\eta_{ij} + \dots + I_k\eta_{iN_j}
\alpha_i \in I_k\eta_{ij} + \dots + I_k\eta_{iN_i}, \quad (i=1,\dots\gamma).$$

Let us put

$$\zeta_{ii1}\cdots_{jr}=\alpha^{i}\eta_{1i1}\cdots\eta_{rir}\ (1=0,1,\cdots,\ r-1,_{ii}=1,\cdots,N_{i},\ i=1,\cdots r)$$

then it follows that

$$\zeta_{1j_1\cdots j_r}, \zeta_{1',j_1'\cdots j_{r'}} \in \sum I_k \zeta_{ij_1\cdots j_r}$$
 $\alpha \in \sum I_k \zeta_{1j_1\cdots j_r}.$

That is, by(i) $\alpha \in I_{k,k}$.

(iv) Note that

 $I_{k/k} \cap k$ = the set of all algebraic integers over k in k.

Since I_k is integrally closed in k(As in (2)) it follows that $I_{k,k} \cap k = I_k$.

(v): Let $\alpha = \alpha_0 + \alpha_1 \theta + \dots + \alpha_{n-1} \theta^{n-1} \in I_{k/k}$ (see Definition 2), and let $X^r + \beta_1 X^{r-1} + \dots + \beta_{r-1} X + \beta_r (\beta_i \in I_k, i=1, \dots, r)$ be a minimal polynomial of α over k. Then

$$\alpha^r + \beta^{r-1} + \cdots + \beta_{r-1}\alpha + \beta_r = 0.$$

The algebraic conjugate $\alpha^{(i)} = \alpha_0 + \alpha_1 \theta^{(i)} + \dots + \alpha_{n-1} \theta^{(i)n-1}$ $(i=1, \dots, n)$ of α satisfies the above equation, i, e,

$$\alpha^{(i)r} + \beta_1 \alpha^{(i)r-1} + \cdots + \beta_{r-1}\alpha^{(i)} + \beta_r = 0$$

Thus $\alpha^{(i)}$ is analgebaic integer over $k(\alpha^{(i)} \in I_{k}^{(i)}/k)$.

On the other hand, $N_{k/k}\alpha = \alpha^{(i)} \cdots \alpha^{(n)}$ and $T_{k/k}$ ($\alpha^{(i)} + \cdots + \alpha^{(n)}$) are symmetric functions of $\theta^{(i)}$, ..., and $\theta^{(n)}$, and thus

$$N_{k/k} \alpha, T_{k/k} \in k$$

Let L be an extension field of $K^{(1)}, \dots$, and $K^{(n)}$ such that $L \subset C$ (the complex field). Then, α^1, \dots , $\alpha^{(n)} \in I_{L/k}$, and also $N_{k/k}$ α , $T_{k/k}$ $\alpha \in I_{L/k}$ by (i). Thus,

$$N_{k,l}\alpha$$
, $T_{k,l}\alpha \in I_{k,l}\cap k=I_{k}$

by (iv). ///.

Theorem 2. When (k: k) = n we have

$$I_{k/k} = I_k w_1 \oplus \cdots \oplus I_k w_n$$
 (direct sum).

where $w_1 \cdots$, and w_n are elements of K. (We say that $\{w_1, \cdots, w_n\}$ is a basis of $I_{k/k}$.)

Proof. As in Definition 2, we put $K=k(\theta)=k\oplus k\theta \oplus \cdots \oplus k\theta^{n-1}(\theta \in K)$. By (ii) of Theorem 1. there exists a non-zero rational integer m such that $m\theta \in I_{k/k}$. Thus, we may assume that $\theta \in I_{k/k}$. Then we have a unique expression of $\alpha \in K$ such that

$$\alpha = \alpha_0 + \alpha_1 \theta + \dots + \alpha_{n-1} \theta^{n-1} \quad (\alpha_i \in \mathbb{R}, i = 0, 1, \dots, n-1).$$

Let

$$\alpha = \alpha^{(1)} = \alpha_0 + \alpha_1 \theta^{(1)} + \dots + \alpha_{n-1} \theta^{(1)n-1}$$

$$\vdots$$

$$\alpha^{(n)} = \alpha_0 + \alpha_1 \theta^{(n)} + \dots + \alpha_{n-1} \theta^{(n)n-1}$$

be the algebraic conjugate of α . We put

$$\triangle = \begin{vmatrix} 1 & \theta^{(1)} & \cdots & \theta^{(1)n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \theta^{(n)} & \cdots & \theta^{(n)n-1} \end{vmatrix} = \pi(\theta^{(i)} - \theta^{(i)})$$

and

$$\Delta^{(i+1)} = \begin{bmatrix} 1 & \theta^{(1)} & \cdots & \theta^{(1)i-1} & \alpha^{(1)} & \theta^{(1)i+1} & \cdots & \theta^{(1)n-1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ \theta^{(n)} & \cdots & \theta^{(n)i-1} & \alpha^{(n)} & \theta^{(n)i+1} & \cdots & \theta^{(n)n-1} \end{bmatrix}$$

then $\theta^{(i)} \neq \theta^{(j)}$ $(i \neq j) \Longrightarrow \triangle \neq 0$ and $\alpha_i = \triangle^{(i+1)}/\triangle$. Since $\theta \in I_{k/k}$ and \triangle^2 is a symmetric function of $\theta = \theta^{(1)} \cdots$ and $\theta^{(n)} \triangle^2 \in I_k$. In

$$\alpha_i = \frac{\triangle \triangle^{(i+1)}}{\triangle^2}$$

 $\triangle^2 \subseteq I_k$ and $\alpha_i \triangle^2 = \triangle \triangle^{(i+1)} \subseteq k(\alpha_i \subseteq k)$. If $\alpha \in I_{k/k} \alpha_i \in I_k$.

Thus, $\alpha \in I_{k/k} \Longrightarrow \triangle^2$, $\alpha_i \triangle^2 = \triangle \triangle^{(i+1)} \in I_k$. Therefore, when $\alpha \in I_{k/k}$ we have the following):

$$\alpha = \alpha_0 + \alpha_1 \theta + \dots + \alpha_{n-1} \theta^{n-1} (\theta \in I_{k/k}, \ \alpha_i \in I_k, \ i = 0, \dots n-1)$$

$$= \frac{\triangle \triangle^{(1)}}{\triangle^2} + \frac{\triangle \triangle^{(2)}}{\triangle^2} \theta + \dots + \frac{\triangle \triangle^{(n)}}{\triangle^2} \theta^{n-1}$$

$$= \triangle \triangle^{(1)} \frac{1}{\triangle^2} + \triangle \triangle^{(2)} \frac{\theta}{\triangle^2} + \dots + \triangle \triangle^{(n)} \frac{\theta^{n-1}}{\triangle^2}$$

$$= I_k \frac{1}{\triangle^2} \oplus I_k \frac{\theta}{\triangle^2} \oplus \dots \oplus I_k \frac{\theta^{n-1}}{\triangle^2}$$

In consequence

$$I_{k/k} \subseteq I_k \xrightarrow{1} \frac{1}{\wedge^2} \bigoplus I_k \frac{\theta}{\wedge^2} \bigoplus \cdots \bigoplus I_k \frac{\theta^{n-1}}{\wedge^2}$$
 (direct sum)

Where the right hand side is a free I_k -module with a basis

 $\left\{\frac{1}{\triangle^2}, \frac{\theta}{\triangle^2}, \cdots, \frac{\theta^{n-1}}{\triangle^2}\right\}$. Thus, $I_{k/k}$ is a I_k -submodule of a free I_k -module. It follows that $I_{k/k}$ has a basis $\{w_1, \cdots w_n\}$ such that

$$I_{\mathbf{k}/\mathbf{k}} = I_{\mathbf{k}} w_1 \oplus \cdots \oplus I_{\mathbf{k}} w_n$$

((10)). ///

Theorem 3. $I_{k/k} = I_k$.

Proof. It is clear that $I_k \subset I_{k/k}$ because that $Z \subset I_k$ Suppose (K:k) = n, (k,Q) = m and

$$I_{\mathbf{k}/\mathbf{k}} = I_{\mathbf{k}} w_1 \oplus \cdots \oplus I_{\mathbf{k}} w_n \ (w_i \in I_{\mathbf{k}/\mathbf{k}}, \ i = 1, \cdots, n)$$

$$I_{\mathbf{k}} = Z \zeta_1 \oplus \cdots \oplus Z \zeta_m \quad (\zeta_j \in I_{\mathbf{k}}, \ j = 1, \cdots, m).$$

Then, we have

$$I_{k/k} = Z\zeta w_1 \oplus \cdots \oplus Z\zeta_m w_1 \oplus Z\zeta w^2 \oplus \cdots \oplus Z\zeta_m w_n$$

which is a direct sum because that $\zeta_I w_I, \dots$, and $\zeta_m w_n$ are linearly independent over Z. Furthermore, since $I_k \subset I_{k/k}$

$$\zeta_1 w_1, \cdots, \zeta_m w_n \in I_{k/k}$$

Next, we want to prove that w_i $(i=1,\dots,n) \in I_k$. Let

$$g(X/k) = X^n + \alpha_1 X^{n-1} + \cdots + \alpha_{n-1} X + \alpha_n (\alpha_i \in I_k, i=1, \dots, n)$$

be a minimal polynonial of $w_i \in I_{k/k}$.

Let us put

$$k^{(i)} = k, \cdots k^{(m)}$$
 as the conjugate fields of k over Q

$$g(X/_k^{(i)}) = X^n + \alpha_1^{(i)} X^{n-1} + \cdots + \alpha_{n-1}^{(i)} X + \alpha_n^{(i)} (\alpha_i^{(i)} \in k^{(i)} \ i=1, \cdots, n).$$

Then a minimal polynomial of w_i over Q is

$$G(X) = g(X/_{b}^{(1)}), g(X/_{b}^{(2)}) \cdots g(X/_{b}^{(m)}),$$

Take a number field L such that $L \supset K^{(I)}, \dots K^{(n)}$. Then $\alpha_i^{(I)} \in I_L$ for $i, j = 1 \dots n$ and each coefficient of G(X) is in Q.

Since $Q \cap I_L = Z$ as in (2) we have each coefficient of

$$G(X) \in \mathbb{Z}$$
.

It is clear that $G(w_i)=0$, and thus wi is an element of I_k .

Therefore we have $\zeta_i w_j \in I_k$ for $i=1,\dots, m$ and $j=1,\dots, n$, because that $I_k \subset I_k$. In consequence, we have the following:

$$I_k = Z\zeta_1 w_1 \oplus Z\zeta_2 w_1 \oplus \cdots \oplus Z\zeta_m w_n$$

$$i,e., I_k=I_{k/k}.$$
 ///

Corollary, $I_{k/k}$ is a Dedekind integral domain.

Proof. By (%) above, since I_k is a Dedekind integral domain so is $I_{k/k}$ by Theorem 3. We have one other proof as follows.

We havetwo steps to do this.

Step I. Let us assume that

$$I_{k/k} = I_k w_1 \oplus \cdots \oplus I_k w_n$$
$$I_k = Z\zeta_1 \oplus \cdots \oplus Z\zeta_m.$$

Then, as before,

$$I_{\mathbf{k}} = Z\zeta_1 w_1 \oplus \cdots \oplus Z\zeta_n w_1 \oplus \cdots \oplus Z\zeta_n w_n$$

Let \prod be on ideal of $I_{k/k}$. Since \prod is a I_k -submodule of the free I_k -module $I_{k/k}$ it has a basis $\{\alpha_1, \dots, \alpha_n\}$ such that

$$\prod = I_{\mathbf{A}}\alpha_{1} \oplus \cdots \oplus I_{\mathbf{A}}\alpha_{n}$$
.

If we pus

$$\prod^{1} = Z\zeta_{1}\alpha_{1} \oplus \cdots \oplus Z\zeta_{n}\alpha_{1} \oplus Z\zeta_{1}\alpha_{2} \oplus \cdots \oplus Z_{n}\zeta_{n}\alpha_{n}$$

then Π^{I} is an idal of I_{k} generated {by $\zeta_{I}\alpha_{I}, \dots, \zeta_{m}\alpha_{n}$ }. There exists a maximum matrix $A = (a_{ij}) \ (a_{ij} \in \mathbb{Z})$ such that

$$\begin{pmatrix} \zeta_1 \alpha_1 \\ \zeta_m \alpha_1 \\ \zeta_1 \alpha_2 \\ \zeta_m \alpha_n \end{pmatrix} = A \begin{pmatrix} \zeta_1 w_1 \\ \zeta_m w_1 \\ \zeta_m w_2 \\ \zeta_m w_n \end{pmatrix}$$

By a choice of $\{\zeta_1\alpha_1, \dots, \zeta_m\alpha_n\}$ and $\{\zeta_1w_1, \dots \zeta_mw_n\}$ A can be denoted by

$$\det A = \begin{bmatrix} e_1 & 0 \\ 0 & e_{-} \end{bmatrix} (e_i \in \mathbb{Z}, i = 1, 2, \dots, mn).$$

Therefore

$$N \prod^{i} = |\det A| = |e_i \cdots e_{nn}|$$

which called the norm of Π^{I} . Thus, each element of I_{k}/Π^{I} is uniquely represented by

$$a_1\zeta_1w_1+\cdots+a_m\zeta_nw_n$$

where $0 \le a_i < 1e_i$ for $j=1,2,\dots$, mn. The number of elements in T_k/ \bigsqcup^j is just $1e_1 \cdots e_{mn}$ $1 = |\det A|$. Put

$$\beta_1 = \sum_{i=1}^{m} {}^{n}a_i\zeta_i, \quad \beta_2 \sum_{i=1}^{n} a_{m+i} \zeta_i, \dots, \quad \beta_n = \sum_{i=1}^{m} a_{mn-m+i}\zeta_i$$

then each element of $I_{k/k}/\prod$ is represented by a unique form:

$$\beta_1 w_1 + \cdots + \beta_n w_n$$

Since I_k/\prod^I is a finite set, so is $I_{k/k}/\prod$.

- Step II. (1) $I_{k/k}$ is integrally closed (iii) of Theorem 1.
 - (2) $I_{k/k}$ is a Noetherian ring.

Suppose a series of ideals $\prod_{1} \subseteq \prod_{2} \subseteq \text{ in } I_{k/k}$. Then there corresponds a series of ideals $\prod_{1} \subseteq \prod_{2} \subseteq \text{ in } I_{k}$.

- By (\circledast) above there exists a positive rational integer l such that $\prod_{l'} = I_k$. Thus $\prod_{l} = I_{k/k}$ and $I_{k/k}$ is Noetherian.
- (3) For a prime ideal \sqcap of $I_{k/k}$ the integral domain $I_{k/k}/\sqcap$ is a dinite set as above. This implies that $I_{k/k}/\sqcap$ is a field. Hence \sqcap is a maximal ideal of $I_{k/k}$.

Sumning up the above things, $I_{k/k}$ is a Dedekind integral domain. ///

References

- 1. K. Kawada: Number Theory Vol. I~ Euwananri Book Company (1976)
- 2. D. Ko: A study on the ring $I_{k/k}$ of integers and Fractional Ideals of k/k. Theses. Hangang Univ. (1985)
- 3. T. Takagi: Algebraic Number Theory, Euwananri Book company (1972)

Seoul Educational College, Seoul (100), Korea.