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1. Introduction

Interest in the topic of normed space in Functional analysis has escalated in the 1950s.
Therefore, during the nearly two decades there has been a remarkable developments in
Functional analysis, stretching its study to Banach space, Banach algebra, and C®-algebra
(€23, €83, (9)).

The main core of Banach algebra can largely be divided into Maximal ideal space theory
and Spectral theory ((3), (51).

It is, therefore, linear operator theory that is vital part of Functional analysis ({6]),
n.

In this view of Functional analysis, this paper deals with maximal ideal space and
B*-algebra. It can, in more details, be described as follows.

§ 2 contains the proof of proposition 2.2 which is a little. properties of Banach algebra’s
element, explaining the required terminology to grasp &3 and §4.

§3 gives proofs of theorem 3.1 and corollary 3.2 which is a part of the main theory
in this paper. That is, if X is a compact and Hausdorff space, then C(X) becomes comm-
utative Banach algebra.

Then, Theorem 3.1, it is argued;

(i) C(X) is semisimple

(ii) The maximal ideal space of C(X), A is homeomorphic to X.

In that case, corollary 3.2 shows the relation of one-to-one correspondence under a
condition, which is

{The set of all closed} —— {The set of all ]
subsets of X closed ideals of C(X)} .

In §4, we prove Theorem 4.1 which consists of one of the main theorem in this
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paper. Theorem 4.1 offers three properties of B*-algebra, proving that disc algebra is a
commutative B*-algeb;a, in proposition 4.2. In addition, it ie verified, by an example of
#-algebra in Example 4. 3,} that if éy#yx, then o(x+y)Ze(x)+o(y) and e(x¥)a(x)+
o(y) don’t hold,

§2. Preliminaries

Throughout this paper, by a Banach algebra we mean a Banach algebra which contains
the identity e.

Definition 2.1 Let A be a Banach algebra. For each x£=4, the spectrum a(x) of x is
the set of all cqmplgx numbers A such that Ae—x is not invertible. The speciral radius
p(x) of x is the number p(x)=sup{|i||ica(x)}.

It is well-known that for each x&A

1. o(x) is compact ’and non-empty,

2.2 p(x)=limllel|""<]lxl|.

Proposition 2.2 In a Banach algebra A the following hold.

(i) Vx,y&A if e—xy is invertible, then so is e—yx.

(ii) Vax, yEA; A=a(xy) =D Ao (yx).,

Proof. (i) Suppose that there is an element 26A such that (e—xy)z=e, ‘.¢.,

z—xyz=e. Then,

(e~yx) (e+yzx)==e+y2x—yx— yxyzx
=e+yzu—yx—y{a—e)x
=e,
Hence, e+yzx is the inverse element of e~ yx, and thus e—~yx is invertible.

(iii) When A=0€=g(xy), we assume that yx ig invertible.

Then there exists an element z65A such that
z2(yx)=(ay)x=e=(yx)z=y(xa).

This implies that x and » are invertible in A, and thus xy is invertible. Hence, in this
case, yx is not invertible, and 0=a(yx).

Next, we assume that A(0)&a(xy) and that le—yx is invertible. Then, there exists
an element 262A such that (le—yx)z=e. Therefore, since yxz=2Az—e, we have the

following:
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(Ae—xy) (A le+2"1xz2y) =e+x2y— A 1xy— A" Ixyxay
=e+x2y— A" xy— A 1x(Az—e)y
=e.

That is, Ae—xy is invertible. This is a contradiction to our hypothesis 2a(xy). /7
Let A be a Banach algebra, and let Q be an open subset of €. Put

H(Q)={f: Q—C|f is holomorphic}
and
Ag={x=Alo()Q}.

For each fEH(Q) we define the mapping f: Ag—A
by

F@ = pf D Ge=0)1 ap,

where x€=A4, and [ is any contour that surrounds o(x) in Q. Put
AQ)=(fIreH(Q)).
Then it is obvious that H(Q) and H(Q) are algebras under the usual operations.
Lemma 2.3 Under the above notations the map
®: H(Q)———H(Q)
W V)

fr—— f

is an algebra isomorphism.

Proof. It is clear that @ is one-to-one and linear. So, it suffices to prove that @ is
multiplicative. That is, we shall prove that if A(A)=s(A) « g(A)(f,g=H(Q) and 1=Q)
then A(x)=fF(x) + §(x) for all A, (note that ASH(Q)).

Consider a rational function

R(2) =P(D+2Z2 Cau(A—a)™

with poles at the points au(am, C.,i€5C), where P(R) is a polynomial in A with coefficients

in C. If we put
R(#)=P(x)+ X5 Cus(x~aue)™,
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then we see that
k(x)z,éfﬁ_ IPR(Z) (Ae=2)"T dA, +roeverereeveneareaians (2—1)

where R(A)EH(Q), x4, and I surrounds o(x) in Q ({1, [12)). In particular,
if a&Q (ac=C), then

._2_;1;.;_ J'p(a._,z)" (Ae—x)"1 dA=(@@—K)" wreereerereerennen (2—2)

for n=0, +1, +2, ((12)). Hence, if f and g are rational functions by (2—1) and
(2—-2) we immediately have

h(x)=F(x) - &(x).
By the Runge’s theorem, for each holomorphic function f there exists rational functions
f. such that f,—f uniformly on compact subset of (. Therefore,

iin(x) :fn(x) ’ gqn(x)"""’f(x) * g-(x)n

where g, is a rational function such that g,—g.

Since k.(x)—sh(x), we have A(x)=f(x) + §(x). ///
Under the above notations there is the spectral mapping theorem such as:
3.° for each =4, and fEH(Q), a(f(x))=F(a(2)) ((1),(4)).
Definition 2.4 Let A be a Banach algebra. A linear functional ¢: A—C is called a

complex homomorphism of A if for any x, y&=4

B(xy) =¢(x) ().

The set A of all complex homomorphisms of A is called the maximal ideal space of A.

For each x&=A we. define

2: AN C
by :?(h):h(x) for each k&=, We put
A={x|x=A}.

Then, the maximal ideal space A of A with the weak topology induced from A (i.e., the
Gelfand topology) is a compact Hausdorff space ((12}). (note that % is a bounded linear

map).
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We put
RA(A)={x= A VhE= A, h(x)=0},

and call it the radical of A (since each maximal ideal of A is the kernel of an element
h=A

Rd(A)szzim’ (M is a maximal ideal of A4)).

In particular, if Rd(A)=1{0}, then A is said to be semisimple.

Lemma 2.5 For commutative Banach algebra 4 and B, let ¢: B—A be an algebra
homomorphism. If A is semi-simple, then ¢ is continuous.

Proof. By the closed graph theorem ({13, {14), (15]), it suffices to prove that {(,¢
(5))|6€=B} is a closed subset of BxA. Thus, we shall prove that if (b,,¢(8,))—(b,a2)
&Bx A then (b,a)={(b, ¢(8))|b6=B)} which is equivalent to ¢(b)=a.

Let Ap and A, be maximal ideal spaces of B and A, respectively,

For a fixed A= A4, define ¢: B——C by d=hoid.
It follows that ¢ is a complex homomorphism.
Thus, for each #=B with ||bll=1 and £>0, we have

|¢(—1—3€-—5)I<1
((12)). That is,
|§() | <1+€==> Vb with ||bll=1, [$(&)]|<1.

Hence ¢ is a bounded linear functional, that is, ¢ is continuous.

Therefore
h(a)=lim h($(b,))=lim ¢(b,)=¢(b)
=h($(8)),
where A&\, Thus,

ha—¢(d))=0—a—¢(b)=Rd(A)=1{0}
—=va=¢(b). s

Let A be a commutative Banach algebra. Then,

4.° for every x=A, {Q(h)IhGE‘:A} =¢g(x) and IIIJ\CH-=P(£),
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where A is the maximal ideal space of A and ll:?!l,,xigpi;(h)l (1).
¥ay

Lemma 2.6 Let A be a commutative Banach algebra.

Then, for any x, ye=A,
o(x+y)Za(x) +o(y), o(xy) Co(x)-a(y).
Proof. By 4°, we have
o(x+9)=(x+9)"(A), o(xy)=(x9)"(L),
where A is the maximal ideal space of A. Since
EHN(AISHA)+5(A),
(BINAISH(A) - 5(A),

Qur assertion is clear. ///
Definition 2.7 For a Banach algebra A, a mapping #: A—-A defined by xr—ax*
is called an imvolution on A if it satisfies the following properties:
D) (x+y)*=x*+y* (x, y=4)

@) (Ax)*=Ax* s, xe=A)
(3) (xy)*=y*x* (%, y=A)
@ x**=yx (x=A).

Furthermore, for each x6=A if [|xx*||=|l«]|* holds, then A is called a B*-algebra.
Let A be a Banach algebra with an invelution .
An element x4 is said to be Hermitian if x=2x*, and if xx¥=2x*x, then x is said to be
normal.
A Hermitian element x&A4 is said to be positive, written x>20, if o(x)C2(0, o0).

A linear functional
F: A—C

is said to be positive if for every x&=A  F(xa*)>0.

Let A be a commutative B*-algebra with its maximal ideal space A. Then, it is well-
known that

5° VhEA and VxesA, h(x*)=k(x).
Accordingly, in our case

x is hermitian<=> (x(k) A< A}CR.
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3. Maximal Ideal Spaces

Let X be a compact Hausdorff space, and let C(X) be the set of all continuous functions

from X to C. Then, with the norm
Hf“»‘*i%]i]f(ﬂl (Yrfec(Xn

C(X) is a commutative Banach algebra.
Theorem 3.1 Let A be the maximal ideal space of C(X). Then A is homeomorphic to
X and C(X) is semisimple.

Proof. Define
¢ X—as\ by ¢(x)=hEN

and A,: C(X)——C is defined by A.(f)=s (%) for all f&=C(X). It is easy to prove that
for all x<=X A, is a complex homomorphism of C(X).

For x#y in X, assume that A,=4hA,. Then
VieEC(X), ) =h(f)==2f(x)=F(¥).

But, we can make a continuous function g&=C(X) such that g(x)2g(y) as follows. Since
X is compact and Hausdorff, it is a normal space. Thus, the' Urysohn’s theorem holds on
X. That is, there is a continuous function g: X ——C such that g(x)=0 and g(y)=1I.
In consequence, ¢ is an injective map. ‘

In fact, ¢ is surjective. That is, for each A&/ there exists a unique element x&=X
such that A=h,.
To prove this we assume that our assertion ‘is fail.
Then, there is an element #&/ such that ksch, for all xe=X.
In this case, there is at least one element f in the kernel of 2 (Ker 2) such that f(x)=c0

for a given point x&X. For we assume that
Vrie=Ker k, f(x)=0,

then Ker #CKer k.. Since Ker % and Ker %, are maximal ideals of C(X), it follows that

Ker k=Ker k.. Since the Banach algebra (every maximal ideal is closed)
C(XY/Ker h=C(X)/Ker A
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is a field, it is isomorphic to C, by the Gelfand-Mazur theorem. Since a complex homo-

morphism maps the identity to I and it is C-linear, it is obvious that

F=Fv: C(X)/Ker hm—easC,

where % and %, are induced from % and k., respectively.
Consequently, we have A=h,. Therefore, there is at least one element fé=Ker % such that
J(x)30 for each point x& X,

Take f.&Ker % such that f.(x)%0. Since f. is continuous, there exists an open
neighborhood U, of x such that f.|U.=0. Then

X: U US’

x&EX

and there is a finite set {U,, - WU JT{U 2= X}, because X is compact.
‘Then

fz‘+ ...... +f,;,,EC(X),
and for each point 46X there exists an integer j(I<{j<m) such that f,,(x)=:0. Put
g::f".f‘z‘_}- ...... +fx,.'fxn

then g=Ker % and g(x)=0 for all x==X. Hence the maximal ideal Ker % contains an
invertible element g. This is a contradiction. Thus there exists an element x&X such
that 2=#%,. That is, we have proved that

¢ X A (xh—hy)

is bijective.
Let 7 be the weak topology of X induced by C(X). In the original topology 7 of X,
since each element of C(X) is continuous, it follows that yCr. Since 7 is a Hausdorff

topology and 7 is & compact topology, we have
r=t ((1), (12)).
In the diagram

"

¢

X~ p-d e

xh + hugb ﬁ'fugx)
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(fEC(X)), take an open neighborhood U, of f(x) in C, then it is clear that
G (FH U =7 (U,

. ,
which is an open neighborhood of x in X (note that f is continuous). It is evident that

¢ is a continuous open mapping, and thus
¢ Xme A (homeomorphic).

(note that the Gelfand topology of A is equivalent to 7 and 7 is equivalent to r.) We can
put X=A.

In view of this point we can regard as

for each fe&C(X) (f"(lz,.) =f(x)). That is, we have the one-to-one corresponding:

C(X)e———C(A)
W W

[ e ./f\v

and hence the commutative Banach algebra C(X) is a semisimple algebra. /17
Corollary 3.2 Under the circumstance of Theorem 3.1, there is an one-to-one corres-
pondence between the set of all closed subsets of X and the set of all closed ideals of
C(X) if each closed ideal of C(X) is an intersection of maximal ideals.
Proof. Take a closed subset K of X and put

IK: ﬂ Ker h’x,

XEK

where A,&=A is defined by the same way as in the proof of theorem 3.1 Since each Ker
ks is a closed maximal ideal of C(X), it follows that Iy is a closed ideal of C(X).
Now let C,(X) be the set of all closed subsets of X ﬁnd Ci(C(X))a coﬁection of all closed
ideals of C(X) which are an intersection of maximal ideals.
Define
¢: CX)———C1(C(X))
by ]Ug Pty Ilg

If K and K’ are closed subsets of X which is K3X’, then there is a point y such that
. 6 5 J—
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either y=K’ and y&K or y&K’ and y=K.,

Therefore, since X is normal, there is a continaous map f: X-—{(0,1) such that f(K)
=0, f(»)=1. Hence, since Ixxly, ¢ is one-to-one.

The inverse @ of ¢ is defined as follows. Let I be a closed ideal of C(X). Put

Ki=[] FrU0).  oorevrneemminiiiiiionimirionne (3—1)
fel

Then K, is a closed subset of X, because f is continuous, i.e., F H(0) is closed in X.

Define
o(H=K,

for each closed ideal 7 of C(X). In this case, for each *=K, it follows that
vVrel, f(x)=0,

which implies that J”Ker %.. Therefore we have

I [ Ker k.

xE.ﬂI

By our hypothesis there are maximal ideals M.(a€54, 4 is an indexing set) of C(X)
such that

I=ﬂ Ma-

asA

Hence
N M« < ) Ker &,
asA x!‘l
Assume that there is an element acA such that

Ma$ {K.er h,lxﬁEK,} .

Then there exists an element y=X with Ker #,=M., by theorem 3.1.
Since y&£K,;, we have

N Y0)DK Uyl
fe]
which is a contradiction to (3—1). Therefore it follows that

I=[] Ker k,.
xer;
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(note that each maximal ideal is a kernel of an element of A and the inverse is also
true.) That is, ¢ is the identity map of C,(C(X)) onto itself. ¢ is onto and thus ¢ is
bijective. /!

Example 3.3 When X={a;, a; as} has a discrete topology, it follows that C(X)=C?
which is a commutative Banach algebra with norm {j«lf=|x| for each ¥=C3. Then, by
theorem 3. 1, the maximal ideal space A of C(X) is homeomorphic to X = {a;, aa, as}, i.e.,
A= A{hays by hag}, where for each x=(x;, %2, %s)EC?

hay(x)=2(a)=2; (i=1,2,3).
Note that the addition, multiplication and scalar product are defined by

x+y*(x1+:v'1, xﬂ+y2' x3+y3))
xy={(%131y %392, %3¥3),
lx:()‘xh zxm lx.?)y

where x=(%;, %2 %3), ¥=(¥1 V5 ¥:)E€% and 26C. In this case:
the set of closed subsets of X={9, {a:}, (a2}, {as}, {a1, a2}, (a1, 835}, (a2, a3}, (a1, @3, G5} )
on the other hand,

the set of maximal ideals= {Ker h,,=M;=(x;, %3, %3)EC?|2,=0
Ker hoy=Ms= (%1, %3, %)EC?|25=0

[ 4o :‘Q‘M" ~c \

Ker k¢,=M,=(x,. Xae xs)EC"’lm:Ol

. ) Ar={ (%1, %2, % )EC? | 2= %3 =0} =M, (| M
the set of closed ideals (not maximal)= Ap={( 1, %3, %)EC? | 2= 25 =0} = M, [\ M

A3= ((x,, X3y xg)EC"“lx, =x2=0} =M)ﬂMg J‘
Ae=1{(0,0,0)C) =M, (\M,(\ M; ’

Thus, each closed ideal is an intersection of maximal ideals. Our example satisfies the
hypothesis of corollary 3.2, and we have the one-to-one corresponding as follows:

The set of closed subsets The set of closed ideals
$ ——
{a:} —— s Ker hq;=M,
. {a3} s Ker heoy=M,
{as} —— Ker k=M,

{a, a3} —— Mi(N\M=A,s
{a, a3} +—— M[I1Ms=A4,
{az a5} +—— Mi[IMy=A4,
{61, a5, a3} — — Mi\M(\Ms=A4,
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Proposition 3.4 Let 4 and B be commutative Banach algebras and let B be semisim-
ple. For a homomorphism ¢: A——B such that ¢(4) is dense in B, assume that
a: Ap——rAa is defined by

(ah)(2)=h($(x)) (xA, hENs),

where A, and /p are maximal ideal spaces of A and B, respectively. Then a(Ap) is a
compact subset of A, and a: Az—a{ Ap)"A, is injective.
Proof. By Lemma 2.5, ¢ is a continuous map. In the diagram

Dp—F A C
i) U u
kor > akhn »h(¢(x))  (x62A4)

we see that

¢

h
(a) he¢p: A——»B~—C isa complex homomorphism (continuous),and thus a: Ay——Aa
is well-defined,

(b) for an open neighborhood U of A(¢(x)) in C, Q‘I(U ) is an open nsighberhood of

ah in A4, and furthermore

A Ea
a i (& U =¢(£)™! (V).

Noting that the topology of B is completely determined by ¢ A) because ¢(A) is dense
in B, it is clear that a is continuous, and thus a{Aj) is a compact subset of A (A is
compact).

For Zi3h; in Ap, there exists at least one point y&=B such that #;(y)#h:(y). Since
¢(A) is dense in B, there is a sequence {x;}<TA such that ¢(x,)—y. By the continuities
of #; and %43, we have

() —2(3), Rl (2)) ——a(3).

The fact that 4;(¥)=ch:(y) implies that there exists x,£5A such that k(¢ (%)) k(P ().

Therefore
a hyxa hy,

that is, a is injective. /77
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4. B*-Algebras
We put
D={z&C| |2|<1}

and denote the set of all holomorphic functions from D to € by H(D). Then, by the usual
operations H(D) is an algebra over C. Define a norm and an involution on H(D) by
setting

€Y Hfllzggglf(z)l. feEH(D)

(i) f*(2)=s(2), 2&D, fEH(D).
Then, H(D) is a commutative Banach algebra with an involution *(see Definition 2.4),
which is called the disc algebra.

In this section, we shall prove some properties on B*-algebras and H(I?), and illustrate
a counterexample about Lemma 2.6.

Theorem 4.1 For a commutative B*-algebra A, the following hold.

(i) A is semisimple.

(ii) If ¥4 is hermitian such that [{x||=a and x>0, then o(ae—x) (0, a) and o(x)
(0, a).

(iii) If x¥=A is hermitian, then x2>0.

Proof. (i) For each x4,

[l =l (I <lixll {l*{I==> Il | <H 2]
=il e | =l

and thus

et =]l2*ll, HxllP=1lal] a® coveevermermnn, (4—1)
Put y=xx*. Then y is hermitian., Thus

= [lyy*it =51l

By induction on #, it follows that for m=2", |[y"|={»"
(=22 llyl=lI(* Yl =114 =Isl)*=]l5ll). By 2° and 4° in §2,

130l = pC5) =limlly™{1™ =],
For each A& A,

YRy =2(R)2*(h)=]%(h)|* (by 5 in §2),
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i.e., 3\»: i/a\cl’. and thus
|!:’c\llzm'~:ll§llw:llyll3Hxx’l|=llx}l’

(by (4—1)). In consequence, for each x6=A we have

Take x=Rd(A). Then

VhEA, 2h)=h(x)=0=|ll.=0
=il =0
= x =0,

where A is the maximal ideal space of A, and hence Rd(A)={0}.
(ii) Let x6=A be hermitian such that 0(x)C2(0,20) and llsll=a. If || >a (BER), then

(Be—x)=P(e~x/B)

is invertible because that [|x/8ll<<1 ((13), (14), (15)).
Therefore, 0(x)(0,a) is clear. Noting that ae—x is also hermitian it follows from 4°
and 5° in §2 that o(ae—x) CR.
ia—Dle—(ae—~x)=—((a—A)e—x) is invertible because
| a—2<0 and o(x)X=(0, %0),
A= ke— (ae—x) = —((a—A)e—-x) is invertible because
a—A>a and o(x)(0, al.
Therefore a{ae—x)[0,al.
(iii) It suffices to prove that a(x3)C[0,oo) because

() =(xx)* =x%1* =x+x=x°
for each hermitian element <A, Put

Q =an open neighborhood of B in C
and define

fi Q—C (Ar—f(D)=42EQ)

(note that since x is hermitian ¢(x)C_R by 5° in §2). Since f is-a holomorphic function,
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by Leinma 2.3
PSR S )
F@ ==t [pf ) Ge-0)1 a3,

where I' is any contour that surrounds ¢(x) in ) (since P is continuous, {?c(h)t rEA)

=g(x) is bounded in R. That is, the existence of I’ is obvious). Moreover, since

= F(x) « F@) =i [ p 52 (Ge=x)71 d

an
(see Lemma 2.3), by the spectral mapping theorem (3° in §2)
o(2%)=f? (0(2))(0,0°). /

Proposition 4.2 Let H(D) be the disc algebra.
(i) H(D) is a commutative B*-algebra.

(ii) For every fe&H(D), ff*>0.

(iii) The mapping

N o

F: H(D)

defined by
Fn=[' syar (renDy)

is a positive functional.
Proof. (i) By the Runge’s theorem, there are rational functions {f,} which approximate
a holomorphic function f&H(D). Therefore we have

Since f, (2) is a rational function f.(7)=/.(2), and thus f.(Z)=/f.(2). In the diagram

I fa(Z) | — |/ *(2) | = f(2)]
Ifa(8)| ————— | f(2)],

we get |f(z)|=]r*(2)|=|f(2)|. Thus,

LAF* =5l (%) ()] =gupl £@)-S*@)|
=supl (D) 17%(a)]
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=sup| f(2)|?
ZeD
=[£I~

That is, H{D) is a B*-algebra.
(ii) By (i) of Theorem 4,1, H(D) is semisimple, and thus H(D):‘zH/(\D):C(A)
((57, (6], (12)), where A is the maximal ideal space of H(D) and

C(A)Y={f: A—>C|f is continuous}.

() =g(A)R.
and thus we shall prove that ;;(A)C:[O,oo). Since H@)‘;C(A} and. IAéi——g‘@C(A)

(Vie=a, 121“1 (h) = |2r(h) 1), there exists an element 26=H (D) such that

g:: 1§‘x —»2‘ (on A)_ .......................................... (4_2)
Then 2(&) = lé\'(‘ﬁ.)l—-g(A)CR, which implies that z==H (D) is hermitian (see 5° in §2).
Put

2f=w=u-+iv,

where # and » are hermitian elements of H(D) (for the existence of » and v see (1] or
(12)). Then

w*w + ww* == 2u? + 207

Wi =202 20— = 20208 =22 e (4-3)
By (iii) of Theorem 4.1, #*>>0 and 0. It is easy to see that
A A Ia) A A A A
(22 g)Y(m)=(lgl—g) - (lgl—g) - &)(A)<0

for all Ae=A. Therefore, ~23°2(A) [0,0<) and ——:/z\-gzo(z’ng is hermitian).
By Lemma 2.6 and (4—3), w*w>0.

Since H{(D) is commutative and w*w >0, ww*>0,
ww*=22g>0, and therefore in (4—2),

we have to have lzr[ ::}. This implies that g=ff*>0.
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(iii) For each f&H(D),
Fm=[ rrmwa=[' re7m a

=[l s FDar=[" 11012 arz0,

and F is linear. : /1/
We have to note that Lemma 2.6 insists that if xy=yx then o(x+ y)Cé(x)%—a(y) and
a(xy)To(x) + o(¥). When xy=yx, we have a counterexample about this:-Lemma as follows.
Example 4.3 We define a norm on C? by

Heoll = || +t {02

for a large positive number ¢, ‘where w=(w,;, w;)eC*,
Let A be the algebra of all complex 2-by-2 matrices with the usial operations. Define a

norm on A by
oyl =max{lly(@)|] lwe=C?, |iw||=1)

for ye=A. Then A is a Banach algebra (non-commutative).

Proof. Suppose

(@) )
{y"“(i;(:) iféi)) !

is a Cauchy sequence in A. Then, for each positive number €, there exists a positive

integer N such that
Va,mzN==)|\ys— yaull <E.
Since

Yo Y (yz(n)~y:(m) yz(n)~ya(m))
Yys(#) — ya(m)  y(n) —ys(m)/ ,

Hya— yall<<€ implies that |{y;(m)—y,(m)| (i=1,2,3,4) is sufficiently small. That is,
{y.} is a Cauchy sequence—) {y.(#)} (i=1,2,3,4) is a Cauchy sequence.

Thus, y;(n)—x,(=C) and thus

o () mmy | qx
"= Gaon e (o 2



18 Eun-Hwi Lee

That is, A is a Banach space,

Consider w=(w;, w;) with [lwl|=1 and

(=)
X3 X¢/ , V3 Y4/

where we&C?, x,y=A. Then

Zyw= (-"13’1+st’3 x:yz+xzy4) (w,)

X3¥1+%eYs Xs¥atXade W

= ((M}’r’r%}’s) w;+ (%193+%3y4) wa)
(Xsy1+%eys) Wi+ Xaya+xeye) s/ ,

syl = | (Z1y1+%2¥3) Wi+ 132+ %296) w2l +E| (Bsyr-+%eys) i+ (Xoyat %ape)t02|
== | 21( 91001+ Yaws) + Xa(yswr+ yaws) | + 1 %3( 30101+ yats) + 2 (Y5101 + par0g) |
< I_y:w1+yawal(lx:¥ +t]xs )+ | pawr+ yawa | (el 2 xel)e oo 44—

Note that

Cor, wdll=1==3 | 31001+ y502| + 1| ysw1-+ yaws| <yl

ICt =121, o= 11 +eizmi<lial, 122l g <ot
Therefore, by (4—4)

Hayall <Nl - HylI==>lp i<l « 1yl

For the identity e= (1 0) of A and we=C? with |lwll=1,
0

1
I=|lwli =lewll,
and thus |lel|==1. Therefore A is a Banach algebra. /1

We define #: A—A by
. = =
(o ~G ).

Then it is easy to prove that * is an involution. Therefore A is a Banach algebra with

involution *.
Consider a fixed element x&<A such that

2
= 0.



Maximal Ideal Spaces and B*-Algebras

Then the following hold.
(1) llx@e)ll=tllwll for each we=C?, i.e., |lxl|=t
(ii) a(x)={t, ~t} =0(s2*)
(iii) o(xx*)=1{1, t*}=0(x*x), a(x+x*)={1-+12, —]~—1?}.

Proof (i) For each w=(w,, w),
. [0 &% wry e wy
x(w)- (1 0) (wz) ( w; )
and hence llx(u)ll=18|w,| +t|w;| =t(law;| +E|ws]) =il
(ii) Consider

le—x= (-§ *t;)

Ae—x is not invertible¢—> A3 -2 =0<&=>A=+4¢. Hence
o(x)={+t, —t}.

Since
0 1
A=
(t’ o) ’
we have also o(x*)={+¢t, —1}.
(iii) Since

s (1), ).

It follows that
a(x+a*)={X(1+13)}, olxx*)=1{1,14} =a(x*x).

In this case, xx®xx*x and

o(x+a*) = (I +))Lo(x) +a(x*) = (-2, 0, 2t},

o(xx*)=1{1,#*} ZLa(x) -a(x*)={—1, #}.

That is, Lemma 2.6 does not hold.

19

1/
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