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1. Introduction

It can be observed in the Harmonic Integral' Theory that there is an interdisciplinarity
between Analysis and Topology. One of the famous theorems in this field is the Hodge
Theorem, which was completed approximately 1950. Today, it appears that this Theorem
is utilized in each field of Topology and Analysis ((1J, (2], (7], (9)). In particular, it is
well known that it led to the Atyah's Index Theorem ((6]).

In this paper, we investigate some properties of Laplacian operator A which is indis-
pensable in Hodge Theorem ( §4), and discuss on eigenvalues of A. We also deal with
the generalization of the Hodge Theorem. It can, in more details, be described as follows.

Section 2 presents the general theory of Differential operator and Symbol which is a
radical background for the contents of section 3 and 4. We also prove Proposition 2.4 and
Lemma 2.6 as the preliminaries for section 3 and 4.

In §3, using elliptic complex, we define Laplacian operator /A more generally, and
prove that if

EI OMJ(M,Ea)“*"'MJ(M,EN)M""O
is an elliptic complex, then
H(E)z<ker A.

In §4, we investigate some properties on eigenvalue of A in Proposition 4.6, and prove
that there is a sequence of eigenvalues

0SS A Ao

of A in Theorem 4.7, which is the main theorem of this paper.
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2. Differential Operators

In this and next sections, by M we mean a compact differentiable manifold with dimg
M=n, and by a vector bundle we mean a finite dimensional C-vector bundle over M ,
where R is the set of all reals and C is the set of all complexes.

For a vector bundle E——M there is a Hermitian metric <, >g on £ ((6), (12)),

and we put
&(M,E)=the set of all C™-sections of E,

where a C™-section is a section which is of the C”-class,
Define an inner product ( , ) on £{(M,E) by

(5,77):L<5(x), BEYS5 dE wverererrereenseseeneneenas (2—1)

for &, p=e(M,E).
Let [I§llo=(&,8)2 (§=#(M,E)) be the L*norm on &£(M,E) and let WM,E) be the
completion of #(M,E) with respect to the L2-norm.

We assume that {U,, @.} is a finite trivializing covering of M, then for each a there

is the commutative diagram

$

Ely——————T.xC"
J' &' ’ : "
Uc - U-(Open in R)l

where ¢, is a bundle isomorphism and ;;3.: U.—{J, are local coordinate systems for M.

Hence if we put
&(U)={f: Ua—sCIf is of the C"-class},

then there is the induced map
o8 : EUaE)—(&(U)I.

Let {p.} be a partition of unity subordinate to {U.}, and define, for £=¢#(X,E),
€1z = Z10 pa Ells iz,

where || |l..qa» is the Sobolev norm which is defined as. follows.
Let f: R*™——C™ be a compactly supported differentiable function. Then we have
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A ae=[ T2+ 1912 dy,

where } is the Fourier transformation of f, 7.e.,
g —-__Lh - ~i%ry
f(y)"‘(zﬂ.)n Iknf(x)e dx

and for y=(y1, -, 3a) |y1=(0:" - 425"
Then {1/llo,z»=17 llo

Definition 2.1. The W*'(M,E) is defined to be the completion of £(M,E) with
respect to the Sobolev norm I |l,,x.

It is easy to prove that

1°. W'(M,E) is a Hilbert space and

- DW(M, EYDWe (M, E)D

2°. if (WM,E))*={f: W'(M,E)—-C|f: is a conjugate linear continuous functio-
nals},
then (W*'(M,E)*=W*(M,E).
Definition 2.2. Let E—sM and F-——M be C-vector bundles and let L: #(M,E)
——&(M,F) be a C-linear map.
If for any choice of local coordinates and local trivializing cover of M there exists a linear

partial differential operator L such that the diagram

oy L L (E)Y"
U, UxC?) -—?J(IU.UXC’)
e(M,EYy L &M, F)y

is commutative, where dime E=p and dim, F=gq, then L is called a differential operator.
If for each f=(f1, -, fL)=(&£U))?

........................

........................
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and
D*=(~1)¥ DD, D~ 75%"” (=1,
We put
Diff(E,F)=={L: &(M,E)——&{M,F)|L is a differential operator of order %}.
Definition 2.3. Under the above notation, let
T: ¢(M,E)—e(M,F)
be a C-linear map. If there is a continuous extension
T,: W/(M,E)—W XM,F)
of T for each s&R, then T is called an operator of order k. We put

OPy(E,Fy={L: &(M,Ey-—#(M,F)|L is an operator of order k}.

Proposition 2.4. (i) Diffy(E,F)COPE,F)
(ii) For each L&OP,(E,F) there exists the adjoint operator L*<OP,(F,E) of L, and

the extension

(L*): WM, F)—sW+¥M,E)
is given by the adjoint map

(Li. )% WM, F)y—s WM, E).

Proof. (i) For any f&<&(M,E) with ||flls+s,e <oo, we must prove that [[Lfl];,e <eo for
each L&Diff (E,F).
Take a multi-index a with |a|=~k, then

ID*flm=[IDF D12 1+ 1912 dy
=[r17»ie G+ isiey dy
<[+ 1FoE A+ 1y a

=[1F e e+ 1y ay
= enm ooy
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A~
where we used that D‘f(y):y‘fA(y) (063, (81) and y#* =y, 21y 3 (] 4 (324 ooy, 2) Yo =
1+ |19k for y=(y1, -, ) and a=(ay, -, a,).

By Definition 2,2, L is a polynomial in D with degree %, and thus
HLS Yy 500

(ii) By Definition 2.3, for each Le=OP,(¥,F) and each s&R, there exists the conti-

nuous extension
L.: W{(M,E)—sW¥M,F)

of L which is a linear map.

Since W'(M,E) and W* (M, F) are Hilbert spaces, there exists the adjoint operator
(L*: (WHM,F))* —(W*'(M,E))*
of L, for all s&R. Noting that
(W (M,E)*=W"(M,E) (2° above),
we have the linear operator
(Li-)*: WM, F)——WssM,E).
We put (I*),=(L,..)* and define
L*: ¢(M,F)——&(M,E)
by L’:(D)‘IJ(M,E)’ then L* is the adjoint of L (Note that &#(M,F)CW* (M, F)).

Definition 2.5. Let 7*(M) be the cotangent bundle of M, and let T/(AM)=T*
(M)~M. For the projection mapping n: T"(M)—M, n*E and n*F are pullbacks of
vector bundles £ and F over M, respectively.

We set, for each #e=Z (the set of all integers),

Smbl,(E, F) = {o<Hom(z*E, z*F)}|o(x, pv)=p* o(x,v),
(%, 0)ET (M), p>0},

where Hom(z*E, :r"E ) is the set of all bundle homomorphisms from 7*E to z*F. FEach
element of Smbl,(E,F) is called a k-symbol from E to F.

For each differential operator L&EDiffy(E, F) the k-symbol ¢,(L) of L is defined as
follows. Let (x,9)ET'(M) and ec=E, be given. Find g&=&#(M) and f=&(M,E) such that
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dgx:v) and f(x)::e'
We define

ou(L)(x, ve=L(-(8=8(x)) ().

Then it is easy to prove that o,(L)ESmbl(E,F) ({6)). In our situation:
3° The sequence
0——sDiffy_1(E, F)—+Diffu(E, F )2+ Smbl,(£, F)

is exact (763, (11)).

4° Let Le=Diffi(E,F). Then L* exists and L*&Diff,(F,E) (Proposition 2.4 and
(123).

Lemma 2.6. With the above notations we have the following:

(i) for each L&EDiff (E,F)

ox(L)*=0,(L*),

where g,(L)*: 7#*F —n*E is the adjoint of 0,(L); a*E-—n*F.
(ii) for L,=Diff,(E,F) and L,&Diffi(F,G)

opei(Lao L) =01(Lg)egs (L),

where G is also a vector bundle over M.

Proof. We shall prove that P&Diff,(E, F) is a Pseudodifferential operator ((3], (43, (6))
from E to F. By Definition 2.2 for any choice of local coordinates, local trivializations and
= IEEWU)=eU,Ely)

P(f)‘:§,?§ .t D* f; (=1, g=dime F)

]

Take a sufficiently small open subset U'CCZU such- that there exists an open subset V of
U satisfying the condition

vcvepycy.
We define a C™-function
a.t?: U—C

such that
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a.” , xe=l
a"(x)= {0 Jae=U-7
0<|a ()| < |aa |, xe=U.

Then for each a&U’

PO =30 32 aa(x) D* fi(x).
jelsh J=1
Define
p..”(x.&)::a."(x) £

for x=U and &(50)=R". Then p'(x,8) (i=1,,q, j=1, P, lal£k) is a C”-function
satisfying the following:

(a) for each compact subset KU and multiindices 8,7 there exists & constant Cg,r,x
such that

(D" Def 92" (%, £ <Cayr, (14 1€ (2K, §(F0)ERT),

where if &=(&;,,&,) and B=(fy, -, B.), then

Y 9Pn
Def=( wz)nm*aslﬁ ...... e

(b) for a fixed & pa”(x,&) has a compact support in U about x,
(©) owi(5e)x, &) =lim2EERD. —g50) & (A>0).

Therefore P is a Pseudo-differential operator from E to F.
By the well known theorem with respect to Pseudo-differential operators ((6)), {111} we
have

ox(Pr)=0,(P)*
and
Owei{Lloo L) =0;(Ls)oay(Ly),

where P, L,=Diff,(E,F) and L, &Diffy(F,G). ///

3. Elliptic Operators

Let E and F be vector bundles over M.
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Definition 3.1. A differential operator L&=Diffy(E,F) is said to be elliptic if
OE(L)(x: U): Ex""‘”"Fx

is an isomorphism for all (x,0)&T7(M), where E, is the fibre of E at x=M,
Proposition 3.2. If LeDiff (E,F) is elliptic, then so is L*<Diffi(F,E), where L*
is the adjoint of L.

Proof. It suffices to prove that
al(L)*: n*F ——a*E

is an isomorphism since cx(L)*=a,(L*) by (a) of Lemma 2.6 (zn: T"(M)—M is a
projection). Since for each (x,0)=T"(M)
oi(L) (x,0): E;—F,
is an isomorphism it follows that
0"(11)’(1.1)): Fa""””Ex
is also an isomorphism. ///
We have the following results ((4), (8], (11)):
1°. For each elliptic differential operator Le&=Diff,(E,F) there exists a differential
operator L&Diff,(F,E) such that
$ LOL".I‘(M’F)GEOP-I(F,FL
ZOL“'I‘(M’E)EOP-I(E,E)

where L is called a parametrix of L.
2° Lol —1 &M, F) and LeL~1 £ (M, ) defined as in 1° are compact operator of order

0(see the commutative diagram

(E °L - I ):
W‘(M,E)«————j—gglg)—-ﬂd;(M,E)

. N .
(LQL"IJ(M,E))J\ W'+1(M E) / J

where the inclusion 7 is a compact operator).
3°. Let B be a Banach space (over R or C) and let S: B——B be a compact operator.
Then for T=1z—S the following hold: ‘

(a) Ker T=T"3(0) is a finite dimensional vector space.
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(b) T(B) is closed in B and Coker T'—=RB/T{B) is a finite dimensional vector space.
By using 1°~3° above we can prove the next property.

Proposition 3.3. Let L&Diff,(E,F) be elliptic.” Then Ker L &(M,E) is a finite
dimensional C-vector space.

Proof. There exists a parametrix [ of L such that -1~ e(M F)GEOP- «(E,E) which
is a compact operator by 1° and 2°.
Since
Lo, By~ Ugm, £y~ Lold=LeLy
by 3°, Ker LeL is a finite dimensional subspace of #(M,E). Since

Ker LoKer LoL,

it is obvious that Ker L is a finite dimensional. ///
Let Eo, -+, Ex be a sequence of vector bundles over M. Assume that there is a sequence

of differential operator L,, L,, -+, Ly.; with fixed order k as in the diagram:

L Ly. L
E: 0—&8(M,Ep)—=2 23 (M, Ey)—0

where L_;=0=Ly. Thus we have the associated symbol sequence of E:

IR /L) S S VY Y SR (3—1)

where n: T'(M)—M is the projection.

Definition 8.4. In E, if LpoL; ;=0 for all j=0,--,N, then E is called a complex
of bundles over M. If (3—1) is an exact sequence, then £ is called an elliptic complex
of bundles over M.

Under the above notations, we assume that £ is a complex of bundles over M. Then
the cohomology HY(E) (¢9=0, 1,-+,N) of E are defined by

¢ - Ker(L,: E(M,E)—e(M,E, _2,)“,:—,-;21(5‘) ...... —
HY B =] oM B 6, £y~ BREy. (3D

Moreover, if E is elliptic, then the Laplacian operators A ; (f=0, 1,--,N) are defined by
Ay=L#Li+Ls g Li*: (M, E)——&(M,E;), oo (3—3)

where L*: &(M,E;.))—&(M,E;) is adjoint of L;: &(M,E;)——&(M,E;.1).
Proposition 3.5. With the above notations the Laplacian operators A;(7=0,---,N)



10 Seung-Ho Ahn

are elliptic differential operators of order 2k.
Furthermore, A;=A*(.e., A; is a self-adjoint operator).
Proof. That A; is a differential operator of order 2k is clear by 4° in §2.

Moreover, by Lemma 2.6
(A ) =04 LY o0 (L) 0ul L ) oo Ly )*

Suppose the diagram

ou(Ly_1) oi(Ly)
I p > mrE; &= n*E.

ou(Ly-)* oy (Li)*

Since (3—1) is exact Im(oy(L;.1))=Ker(o,(L;)).
On the other hand, it follows from

Ker(o,(L;)) LIm(oy(L;)*)
that

7*E;=Ker(0,(L;))®Im(ai(L)*).
Furthermore

ak(Lj-t)“Th(Li-l)* i Ker ¢.(L;) and
au(L)*eau(Ly) I Im{a,(L))*

are injective homomorphisms, and it follows that
o) = Inkg;.

Accordingly, A, is an elliptic operator,
Next, for all u,ve=¢(M,E))

(A, 0)=((L oLy+LjyoLi 1 Yu,v)
=(L*oL;u,0)+(Lyro Lyl u,0)
=(u, (L*eL;+L;.10L; ) ©)
= (#, A0}

and thus A;=A;*, where ( , )means that for &, 7&=¢(M.E;)
€m=[ <e@, 7>, dx

(see (2—1) in §2) and < , >4 is the given Hermitian metrics on E;. ///
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Let LEDiffy(E, E) be a self-adjoint elliptic operator. Then there are two linear mappings
Hy: ¢(M,E)——Ker L, G.: £(M,E)~—(Ker L)*

satisfying the following ((7], (103, (13)):
£ LoGuHi=GioL+Hi=I, 31 )

5°. Hi, Gi=O0OP._;, which extend to a bounded operator on W°(E,E)
6°. &(M,E)=Ker LBGoL(&(M,E))
=Ker LBLG(£(M,E))

and this decomposition is orthogonal with respect to the inner product ( , ) in W*(E,E).
(Note that E is a vector bundle over M). In the above situation, the operator G is called

the Green's operator of L and for simplicity we shall put

Ker L=x;.

As before, let

L Ly. L
E: 0—&(M,Eg)=28(M,E})— =23 8(M, Ex)—50
be an elliptic complex of bundles over M, where
L,&Diffy(Es, Eser) (J=0,-N—1).

Lemma 3.6. Under the above notations the following hold.
(i) For ¢ (M, E))

D=0 Ly Ezo:LJ-I'E /=0, ""N)-

(i) LiGpy=Gayzey Ly
Proof. (i): (As,8)=(L*L&,8)+(Li- &, Lyl é)
= L&+ L, E115,
where ( , ) is the inner product on &(M,E;) (i=j—1,1,§+1). Therefore

D& =0 LE=0=]|L; 1 &l
&Ly §=0=L,.'¢

(ii): For simplicity we put
GA,=G;, HA,=HJ and .#'A,=x;

Since it is obvious that
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Gila,=Lsl ;=0
by (i) and 6°, we shall prove that
L; G;=Gyeil; on ;5.
Take o=&#(M,E;) and put A; ¢=¢.

From 4° we get

L p=Hyi(Ly ©I+Givr HiwtlLy ¢)
=Hiju Ly 9+Goer Ly Dy @

by definition of A; (.e., Aju Li=L; Aj).
On the other hand, since

p=H; ¢+G; A; ¢ (by 4°),
we have

Lip=L; H; o+L; Gy A; .
It follows that

Hiwr Ly 9+Giaa Ly 55 9=L; H; 9+L; Gy Ay 0-
Thus we have

Giv L; §=L; G, &,

because Hy Ly=L; H;=0. [//
Theorem 3.7. Under the above notations, for each g(¢=0, I,--,N) there is a cann-

onical isomorphism
HYE)=x, (=Ker Ag).
Proof. From (3—2) HY(E)=Z%(E)/B*E), where Z*(E)=Ker L, and B*(E)=Im L,_,.
Define
@: Z(E)——Xq
gjh'—-’fﬂ(é)zH.(E)

Then, it follows from (i) of Lemma 3.6 that & is linear and surjective.
We shall prove that

Ker 9=B(E)
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Assume that £&Z%E) and H (€)=0, then we have

§=Hy(§)+ D¢ Ga(§) (by 4°)

=Ho(§)+(Le* Lo+ Loy L") Go(§) (H(8)=0)

=L¢* Goer Lo(€)+Lg-s Lqul* Gc(e) ((i1) of Lemma 4.6)
=Lg.1 Lol Gol€) (Lo(§)=0)

=L (Lot Go(§))EBYE). ///

4. The Laplacian A and Its Eigenvalues

Throughout this section, by X we mean a compact oriented Riemannian manifold with

dimension 7. As is well known there is the de Rham complex

d d
E(X): 0—E (X)—=>ENX) ——s- e EM(X) —0,
where
EHX)={s: X—~sA* T*(X)|s is a C"-section},

A T*(X) is the set of all p-forms on X and 4 is the usual exterior djfferemtiatign operator
(. |
Since ded=0 and each A*T*(X) is a R-vector bundle over X with dimension .C,, E(X)
is a complex of bundles over X (See (3—1) of §3) (Note that d is a differential operator
of order 1).

Proposition 4.1. E(X) is an elliptic complex.

Proof. For T"(X)=T*(X)—X, let m: T'(X)—X be the projection.

we have to prove that

)| o)

0—1* A'T*(X) z* A" T*(X)——0

is exact. It suffices to prove that

a* AP TR X).f.‘ﬂ,,ﬁ A TH( X)gi(-d-?yx* APITH(XY e (4—1)

is exact at 7#* A#T*(X). For each (x,0)&T"(X) and esA* T*(X)

o:(d) (x,0) e=d(g—g(x))(x) d e
=(~%§- (x)dxz+---+~gf‘f(;c) dx)A e
=vde(EA T(X))
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where dg,=v (see Definition 2.5). Suppose
a1(d) (x,v) e=vde=0 (e=A* T*(X)):)

Then there exists an element e'&=(At"! T*( X)), such that vAe’=e. It follows from o,(d)
(x,v)e’ =vAe’ that e=a;(d) (%, v) (A1 T*(X)),, and thus (4—1) is exact. ///
We shall define the Laplacian A;(j=0, 1, --*,#) on the elliptic complex E(X) as follows.

The linear operator

*: BN X)—E™H(X) ($=0,1,,n)
is defined so that

W=D g x),
We also define the linear map

d: EX(X)—E*"1(X) (=0, ,n+1)

by d=(—1)"¢*D*1 adu, where E"I{(X)=0=E"" (X).
Definition 4.2. We define the inner product <, >, on E*(X) by setting

<@ B>,=| atn, aBSENX) (6=0,1,\m)

(Note that our integral is well defined since X is oriented).

Proposition 4.3. Under the inner product <, >, the operator § is the adjoint
of d.

Proof. For ac==E*(X) and BE#(X) we shall prove that

<da, B>pu=<a, 86>,
Since

d(afdef) =da AeB+(— )*a Ad=p
=da Aef~a A*38,

we have

j Jaanf)= j da dnp— j 2 e3P,

Since a A« is a smooth (#—])-form on a compact differentiable manifold X with dimg
X=n,
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j da MB)=0

by a Stoke's theorem (13,073, (13}).

Therefore we have
<da, ﬁ>,+;=deaA~ﬂr:Jxa A= <a, 6>,.

Crollary 4.4. For each p($=0,1,---,n)
Lp=8d+dd: ENX)——E*(X)
is the Laplacian operator, and thus
H(E)=Ker Ay

where H*(E) is just the p-th de Rham cohomology group of X.
Proof. Since E(X) is elliptic (Proposition 4.1) and 8 is the adjoint of d, it is clear
that A, is the Laplacian operator (see 3—3).

Moreover, since A, is also self-adjoint and elliptic, it follows from Theorem 3.7 that
HY(E)=Ker A ///

Each element of Ker A, is called a A,-harmonic section.
Then, Corollary 4.4 says that there is an one-to-one correspondence between the set of
all Aj-barmonic sections and the set of all p-th de Rham cohomology classes, which is
the classical Hodge theorem.
In view of this fact, Theorem 3.7 is a generalization of the classical Hodge theorem.

In the sequel, we shall put
Dr=10, GA’=G’ HA’:H’ Ker[lﬁ"":xA

for simplicity.
Definition 4.5. (i) A linear bounded map

I: Ef(X)—R
is called a weak solution of Aw=a (a€SE*(X)) if for every ¢=E*(X)
I(A‘QD):<Q, 9D>9'

(Note that for each weak solution 7: E*(X)—R of Aw=a there is always an element
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wEEE*(X) such that /(B) = <w, B>, for all BEE*(X) ((11]) (4—2).

(ii) A real number A such that there exists an identically nonzero element wE=E*(X)
which Aw=2u is called an eigenvalue of A. If 1 is an eigenvalue of A and Aw#=:Au, then
# is called an eigenfunction of A.

For each eigenvalue 4 of A,
{WE=E* (X)) | A= Aut}

is called the eigenspace of A.
Proposition 4.6. (i) Each eigenvalue of A is nonnegative.
(ii) Each eigenspace of A is finite dimensional.
(iii) Eigenfunctions corresponding to distinct eigenvalues are orthogonal.
Proof. At first, we have to note that
(a) G commutes with 4, §, and A
(b) Ya E*X) a==Ha-+dd Ga+dd Ga
(see 4°~5° and Lemma 3.6 in §3).

(i) Assume that Awu=Ae, A#0, and w=x; , then

<w, u> = <GAU, U
= AL Gu, u>
= AL Gu, (8dG+daG) u>
=A{<dGu, dGu>+ <dGu, 6Gu>-}
= 2(/|dGul |2+ 118Gl ?) ‘
>0,

and thus A>>0, where <, >=<, >,
If #,%{0}, then for u(s:0)e=¥, Au=0u. That is, ¢ is an eigenvalue of A. It follows

that each eigenvalue of A is nonnegative.
(ii) Let A(s0) be an eigenvalue of /.
Then

A—A ENX)—E*(X)

is a differential operstor of order 2. Since

a(a-DE@=(a-D G Ew-01 H @

NG =G ORI RS
=0y(A) (x,0) e
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and 0:(A\)(x,0) is an isomorphism, so0 is 0;(A —2)(x,v), where(x, )T (X)), dg.=v
and f(x)=e,

It follows that A—2 is a self-adjoint elliptic differential operator.

It follows from Proposition 3.3 that Ker (A —2) is finite dimensional.

Therefore,

Ker(A -2 = {us=E?*(X) | An=Au)
is finite dimensional. When i=0,

¥ n=Ker A= {u&=E*(X)|Hu=0}

is finite dimensional.
(iii) Let A; #4; (both nonzero) be two eigenvalues of A.
Assume that Awy=24; #; and Asg=2Age(us, #6=E#(X)), then
<A171: U > = <[y, U
| I
Ar<luty, Wy = Ap<lthy, up>

and thus <u;, #,>=0, where < , >=<, >,

When 4,=0,
O=<Auy, uz>=2<tty, uz>> (Ag#0,)

and thus<{w;, #;>>=0, where <(., >=<,>, ///
Theorem 4.7. There are eigenvalues 0<CA;<<Ap--0f A. If an orthonormalized sequence
of eigenfunctions {#;} corresponds to 0<A; <A< :--where each eigenvalue is included. as

many times as the dimension of its eigenspace, then for all ac=E*(X)

"
Ll}"&”d—— 2 La,u >, uill=0,

i=]

where |lal|= <a, a>,}
Proof. For simplicity we also put <, >,=< , >.

Consider two linear maps:
O XS oA, G NG —— X
(G is the Green's operator of Ao ). Since for each assx

AGa=GAa=a (see 4° in §3),
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if Aa=2a(i>>0) then Ga:-l{_a, Z.e., if A(+#0) is an eigenvalue of A then 5 is an

eigenvalue of G.

We put

7r=sup |G|l
PEX T

loll=1

Then it is obvious that ||Gl|=%,, where ||G]| is the norm of G as an operator.
Therefore we see that 7,>>0 and for every gpe=x Gell<mlioll.  (4—3)
Let {¢;}”# 5 be a maximizing sequence for %, that is, |l¢,||=1 and G @4l —7,.
Then

G*0; —ni2pl2= <G 05— @1, GF @5—77 ¢>
=|IG? @llF— 272 <G? ¢y, ;> +yt
<SRG ME~ 292G 12+ 1,4

(Note that<<G? ¢;, 9;>=<G @;, AGP;>=<Gp;, Gp;>
for all ¢, ), and thus

;{Q}”Gﬂ ;=97 @ill=0.
Therefore, if we put #;=Gp;—7; ¢; then

TP <T;, GT> + 1= <, G, +5: ¥i>
=<F; G Q;~972 ¢;>

(Note that <¥,, G¥;>= <(ddG+3dG) ¥ GO >
=< 3G¥;, G ;> + <dGY¥ ;, dGl¥;=0),

and thus ||¥l|=[IGp; —7:¢:ll—0. This implies that
51_{33 GSDJ:?_SQ 7 Pis

Since |G@il|—71, there is a subsequence of {g;}, call it {¢;}, such that (Go,} is a
Cauchy sequence (Note that E*(X) is a Hilbert space under the inner product <, >,).

Define a linear map
l: E*(X)—R
by 1(ﬁ)=}ij§ 7:1<Gg;, 9>, where fE*(X).

Then it is clear that / is bounded. For ac=E*(X), we have
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(A =30)% @) =lim 71<Gop (A -1 )% a>
1 joom T
=lim (<n AGpu a>-m<Gon 2]
=lim (<m1 @i @> =< 91y 5->)

=0
=<0, a>.

Since A—1/7; is an elliptic operator, by (i) of Definition 4.5, ¢ is a weak solution of
(&~ 1/m)u=0. Therefore, by (4—2) there exists an element we=E*(X) such that (A—
1/71) u=0. Hence, Au=(1/7;) # and I/7,=2; is an eigenvalue of A.

Let #; be the eigenfunction of the eigenvalue A;=1/7, (4o ) and let R, be the
R-vector space generated by #;. We put

2= sup [1Gell,
]

then by the above way we can prove that 0<7,<7, and 2;=1/7; is an eigenvalue of A
(Note that 2,<{2;). Repeating this way we can get eigenvalues 0<<A; <A, <---. We rearrange
this sequence to get a sequence 0< A, <2;<<-++ of eigenvalues where each eigenvalue is
included as many times as the dimension of its eigenspace.

Let {#;} be an orthonormalized sequence of eigenfunctions corresponding 0<{A;<2;-.
Assume that

dimg (.:!’A) =k,

Then, for each ac=E*(X)
H@)=E<a,u> u,

and
a-E<a,u>u=a-H@SH s

Since Gl . : # 5 — X is surjective, there exists Sy such that
Gﬂ::a-i;‘_‘.t<a,u‘> ;.

It follows that for n<k
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la=Z5<a, %> wll=lIGA-ZZ<B, u> ull

Auuillf~22<B, u> wil

a
< i {1811,
where @ <B—3S<B, u> iy B—32<h, u> u>
i=ktl iwy+l
=|18lF - 2o<B, >4,
tLF S

® for the space R, which is generated by {uy, -, %}

Dnsi= SUD NG|
Holl=1
PE(H LBR)”

and ||Goll<mnuillgll by (4—3).

Since Aup1——0oo as #——oo we have
.1 _
lim— 18ll=0
e Antl

and thus

lim lla-25<a, %> wll=0. ///
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