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0. Introduction

Theory of C*-algebras isa branch of classical analysis and it has been developed since
approximately 1900. C*-algebras could be characterized as a special class of Banach
algebras by means of a simple system of axioms and play a basic role in the study of the
representations of a very extensive class of involutive Banach algebras. The study of
C*-algebras  consists of two parts: one is related to the inherent structure of algebras
(013,033,(123,(133) and the other is concerned with the representations of a C*-algebra
(053,083, (123, (171).

The purpose of this paper is to prove some properties of C*-algebras without unity
(section 3) and to study on *-representation (section 4).

In section 1, we describe some important terminologies and notations which are needed
in section 3 and 4. In section 2, we construct three kinds of C*-algebras in.Example 2. 1.
It is noted that the third example is in connection with the Theorem 3.4. The purpose
of section 3 is to prove Theorem 3.4 which states a property of C*-algebras without unity.

Proposition 3.1, Lemma 3.2 and Lemma 3.3 are preliminaries to the proof of Theorem
3.4. Theorem 3.4 states that if M is a modular maximal ideal space of a C*-algebra A
and C°(A4) is a set of bounded continuous functions on .# vanishing at infinity, then a
map A—C°(A) (x~——+:Ac) is isometric, surjective and *-isomotphic.

In section 4, we prove two results (Theorem 4.6 and Theorem 4.8) on *-representation
and it is particularly observed that

Z(a*a) =W (p(a*a)).

1. Preliminaries

Let A be a Banach algebra. A mapping x~—ax* of A into A is called an involution
on A if it satisfies the following properties, for all x, y&&A and Ae=C:
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(x+3)*=a*4y*
(Axy*=2 z*
(ey)*=yha*

a¥* -y,

where C' is the set of all complex numbers,
A Banach algebra with an involution is sometimes called a Banach *-algebra. In a Banach
* algebra A, if for all x=A

]| = ||x||2

holds, then A is called a C*-glgebra,
Let A be a C*-algebra. For each xeA,

74(x) (or r(x)) denotes the spectral radius of x, and
o4(x) (or o(x)) denotes the spectrum of x.

The followiog properties are well-known ([1J, (3], {123, 13)).

1° For all x4, ||x¥|=]lx||

2° If A has a unity and xx*=x*x (i.e, % is normal) (¥<A4), then Ta(x)=lx|l.

3° If A has a unity and x=x* (x=A) (i.e., x is hermitian or self-adjoint) then
o) ZR.

For a C*-algebra A without unity, let A, consist of all ordered pairs (x,a), where
2¢ZA and ac=C. Define the vector space operations in A componentwise, define the

multiplication in A; by

(*,a) (3, B)=(xy+ay-+px, af).
and define

(%, )il =llxll +lal, es,= (0, 1).

Then (A, || ||) is a Banach algebra with unity eq, (L120).
In this case, we can regard A as a subalgebra of A4, and as an ideal of A,

Therefore, for each x€A4, the mapping
Tx: A——A (VacsA, Tx(a)=xa)

is a linear bounded operator. We put, for each xc=4,,



C*-Algebras and »- Representations 3

2| =T,

then the following is known ({1),(15), (161).
4° For each (a,a)&A; we put

((ls a)* = (a*! E) :

(a) (A5l ]) is a C*-algebra with unity.
(b) For all ac==A, lla|l=|al.
(¢) Embedding (A4, |l {)——(A;, | |} is isometric.
(Ar, | 1) (or Ay) is called a C*-algebra unitification of A.

Furthermore A4 is a closed linear subspace of A4,.
Let A and B be C*-algebras (both with unity or both without unity).

An algebra homomorphism
¢: A—-B

is called a *-homomorphism if for all a4, ¢(a*)=¢(a)*.

Proposition 1.1. If A and B are C*-algebras with unity, and if ¢: A——B isa
*.homomorphism such that ¢(e,)=es, then llo(a)ll < llajl for all a in A and ¢ is con-
tinuous, where ¢, and ep are unities of A and B, respectively.

Proof. If a—2e, is invertible in A4, then ¢(a— Ae,)=¢(a)~ Aep is invertible in. B.
Hence o3(p(a)) o, (a) and 7a(9(a)) <ra(a).

If a is self-'adjoint then so is ¢(a), and 2° yields

o)l =7s(9(a)) <7 4(a) =]lall.
If a=A is arbitrary then a*a is self-adjoint, therefore
lle(@)|I2=llp(a)y*¢(a)ll=lp(a*a) || <lla*all=llall?,

thus lle(a)ll < llall.  ///
In particular, the following property is well-known ((13,{121)

5° Let A and B be C*-algebras with unity, and let ¢: A——B be a *-homomorphism

and injective. Then ¢ is isometric.
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2. Examples

In this section we consider three illustrations of C*-algebras.
Example 2.1. (i) Let T be a nonempty set. We put
B(T)={x: T—>Cl|x is bounded, i.e., TMs.t.|x(¢)| <M VieT}

and define
il =supla ()]

for all xe=B(T). Then B(T) is a commutative C*-algebra with unity.
Proof. For all x,y &B(T) and A €C define the followings:
(x4 yY () =2)+5(8), xy(@)=x()x(D.
QY@ =ix(t), (=T).
Then, with the given norm |} |l. it is c¢lear that B(7") is a normed algebra over C.

Let {x,|n=1,2,...} be a Cauchy sequence in B(T"). i.e., for each €>-0 there exists

N >0 such that for n,m_ >N
Hxn"xnllmﬂis-

This means that for all # &T |x.(f) ~x,(8)| <e¢. Therefore, for each ¢ &T {x,(t)|n=
1,2,...} isa Cauchy sequence in C. Since C is a Banach space there exists a limit y,&C
such that x,(¢) —y, for all =T, It is easy to prove that the set {y,|f<=T} is bounded.

Hence, the mapping
x: T ——C

defined by x(¢)=y, for all &7 is bounded, It follows that xc=B(7T") and %,-—x in B(T),

because that
fa(t) —x,(t) | = |y, —xa() | <E

implies |jx ~ x,/l. <€.

In particular, {]ijle=1 (1: T—C s.f.1(#)==1), and thus B(T) is a commutative Banach
algebra with unity, because that ||xy|l.< llxll.]lylle.

Next, define for each x&=B(T)

x*: T

by x*(¢)=x(f) (the conjugate of x(¢)), then it is easy to prove that for x,y&B(T) and
ie=C
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AT R (x+y)¥=x%y*,
(Zx)*mZx*, (xy) *=y*x*==x*y¥,

el =1l][2 = llx*12

Iy

In consequence, B(T) is a commutative C*-algebra with unity. ///

(ii) Let T be a topological space. Then, by (i)
B(TY={x: T—C|x is bounded }

is a commutative C*-algebra with unity. Moreover,
C~(T) = {x=B(T") % is continuous}

is a closed C*-subalgebra of B(T) containing unity. If 7 is completely regular, then
C=(T) separates points of 7.

Proof. Suppose a Cauchy sequence {x,} in C=(T"). By(i), since B(T) is a Banach
space there exists a limit ¥&B(T) such that x,—-x.
Noting that. if x,, is continuous and bounded, then x,——x means that x, converges uniformly
to x, and thus x is also a bounded centinuous function, it follows that x=C~(T). Therefore,
C=(T) is a closed subset of B(T). By the same way as in the proof of (i), it is easy to

prove that C~(T) is a commutative C*-algebra with unity.
Next, assume that 7" is a completely regular space. Each single point of T is a closed

subset of T. For two different points #,%¢; in T, there is a continuous function
x: T—RcC

such that %(¢;)=0, #%(¢z)=1 and 0<{#(¢)<1, by the definition of completely regularity,
where R is the set of all real numbers. Hence x¢=C=(T), and C™(T) separates points
of T. ///

(iii) Let T be a locally compact space. Let

C°(T) = {x=C=(T) |» vanishes at infinity i.e., Ve>0 {t&T|x(t) =€} is compact}.
Then C°(T) is a commutative closed C*-subalgebra. If 7 is locally compact and Hausdorff,
then C°(7’) separates points of 7.
Moregver, C°(T") has a unity if and only if T is compact.

Proof. At first, we note that

x=C°(T)<>supp x=the closure of the set {te=T"|x(¢)+0} is compact.
Also we know that each *=C°(7") is a bounded continuous function, and C°(T)CC=(T).
For a Cauchy sequence {x,} in C°(T") there exists x¢=C=(T") such that x,——x by (ii).
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We want to show that x=C°(T"), we put
L= {t=T| 12(2) | =€),

Since x,--—x, there is a N such that {Jxy—x|l.<6/2. Also, we know that {{=T"| |xy(2)|
>e6/2) is compact. Since L is a closed subset of {fe=T'| |xy(¢)|>€/2)}, L is compact.
Therefore, x€=C°(T). Hence it is obvious that C°(T) is a closed Banach subalgebra of
C=(T). For each x&=C°(T), since x*: T—C is defined by

a* () =x(t) (t=T)

it follows that x*=C°(T"), and therefore C°(T) isa closed C*-subalgebra of C™(T). It is
clear that C°(T) is commutative.

If T is locally compact and Hausdorff then for ¢;5f; in T, there exists a continuous

function
x: T—C

such that x(¢;)=0, x(f;)=1 and 0<Sx() <1 for all t&T by the Uryshon lemma. More-

Hence ¥=C°(T"), and C°(T) separates points of T.
It is obvious that
162C°(T) (1: T—C: 1()=1)>T is compact,

and thus our last statement in (iii) has been proved. ///

3. C*-Algebras Without Unity

Let A be a commutative C*-algebra with unity. The Gelfand-Naimark theorem ((12))

says that there is an isometric, onto *-isomorphism
ey
TR BT GF | Wl ¢"F NN v S PP 3—1,

where # is the maximal ideal space of A, C(.#) the commutative C*-algebra consisting

of all continuous functions from . to € and x the Gelfand transform of x. In this section,

we prove some properties about C*-algebras without unity, Throughout this section by a
C*-algebra we mean a commutative C*-algebra

Proposition 3.1. Let 4 and B be (C*-algebras, and let ¢: A——B be a *-homomor-
phism. Then the followings hold:
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(i) For all a=A, llp(@)li<llall and ¢ ‘is continuous.
(ii) ¢(A4) is a closed C*-subalgebra of B.
Proof. (i) Let us put
A;=a C*-algebra unitification of 4
B;=a C*-algebra unitification of B (see 4° in section I)
and let e4, and es, identities of A, and B; respectively.

Define

by o((x, )= (p(x), ) for x=A and 2=C, Then @ is an extension of ¢ to 4,, i.e., o is
a *-homomorphism with ?o(e,{")segl.

Since 9(x)=¢(x) for all A, by Proposition 1.1 and 4° in section 1,
llo(a)ll=gC@) | <lal=lall.

Hence ¢ is linear and bounded. That is, ¥ is continuous.
(ii) Ker ¢ is a closed two side ideal of A; by Proposition 1.1. Therefore A,/Ker o is
a C*-algebra with respect to the quotient horm.

Define

p: A/Ker ¢—p(A;)CB,

by Z)([xj):gz(x) for all xe=A4;. Then gTJ is a injective *-homomorplism. By 5° in section
1, ®(A,) is a closed C*-algebra of B,.

Hence
Pp(A)=p(A)NB

is a closed C*-subalgebra of B. ///

Let A be a commutative Banach algebra without unity.
An ideal I of A is said to be modular if there exists an element #=A such that for all
a=A

a—auc= 1.

An element ac=A4 is said to be quasi-regular if there exists an element A such that
gob=a+b—ab=0.

For each x=A we define
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o4(x) = {0} J{1e=C |20 and 1"'x is not quasi-regular}

which is called the spectrum of x in A. Suppose that A is a commutative Banach algebra
without unity, and assume that f: A——C is an algebra epimorphism. Then by Proposition
3.1 f is continuous and {|f]i<1.

Put

M= {x=Alf(£)=0},

then M is an modular ideal of A, since f is an epimorphism there exists an element e==A

such that f(e)=1, That is, for all xezA4
fx—xe)=f(x)—f(x) f(e)=0.

and thus x—xee=M.

In particular, M is a closed modular maximal ideal of A. In fact, we assume that M is
not maximal, then there is a modular maximal ideal N such that MCCN. For each element
ae=N —M there exists an element b= A such that ab-+M=e+M, because that

fut A/M—C

defined by fy(a+M)=f(a) is a ring isomorphism. Hence ¢&=N and we have N=A.
It follows that M is maximal. Since f is continuous and M=f"1(0), M is a closed ideal
of A.
In consequence, for each algebra epimorphism f: A——C, we see that

(i) f is continuous with [|f]|<1.

(ii) the kernel M of f is a modular maximal ideal of A4

(note that each maximal ideal is closed).

Conversely, we can prove that for each modular maximal ideal M of A there is an algebra
epimorphism fy: A——C such that kKer fy=M. That is, if we put

& =the set of all modular maximal ideals of A

& =the set of all algebra epimorphisms from A to C,
then there is a bijective mapping:

VI(-_-——Q‘Q’ (Mg—-‘_;f'). .......................................... (3‘_—4)

Lemma 3.2. With the above notations the followings hold.
@ rUoy=1{f: A—C|f is a continuous linear form such that F(xy)=rF(x)f (3}
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is a weak w-compact subset of A’, where A is a Banach dlgebra without unity and A’ the
dual space of A.

Therefore & is locally compact for the weak *-topology. The set .#, equipped with the
topology induced by &, is called the moduwlar maximagl ideal space of A.

(ii) For each xc=A
¥t M——sC (M) =Fu(2))

is continuous and vanishes at infinity, i.e., }60(#) (see (iii) of example 2.1 in §2.).

In particular,
oa(x)=%(4)U {0}, [l =r () <llxl,

where 7,(x)=sup{|i| |ASa.(x)}.

(iii) A—>C°(4) (x/—%) is an algebra homomorphism.

The kernel of this homomorphism is the radical of A, whﬁre the radical of A is the
intersection of all modular maximal ideals of A4.

Proof. (i) At first, we shall prove that if f: A~——C ig a continuous and linear form
such that f(xy)=F(x) f(y) and f=0, then f is an algebra epimorphism. There exists
at least one element a€A such that f(a)=0. In this case,

flCa(CaA): Ca—-C

is an abelian group isomorphism, and thus f: A——C is an algebra epimorphism.
By (3—3) and (3—4) 2 |J{0} is contained in the closed unit ball of A’ which is weak
#-compact by the Alaoglu-Bourbaki theorem({1)). Hence it will suffices to show that
{0} is weak #-closed in A’. Suppose {f;} is a net in {0} /& which is weak #-conver-
gent to f&A (i.e., VxesA lim |fu(x)—f(x)|=0). Then for x, y=A and i1sC,
limf;(x-+ ) =lmf;(x) +lmf;(9) = f (x+y) =)+ f ()
Hm fi(xy) =lim f;(2) f;(3) =lim f;(x) Hm f,(p)==>f (x9) =1 (2) S ()
lim f;(A%) = A lim f;(x) == f (%) = Af (),
and thus fe&4 |J{0}. Since 2°|J {0} is Hausdorff and closed in-a compact set it is obvious
that & J{0} is a weak #-compact subset of A’.
{0} is a closed subset of A’, and thus & =2 {/{0}~ {0} is a locally compact subset for
the weak *-topololgy.
(ii) Put

L= (M| |x(M)|= | fulx)| =€}
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for some positive number &>0. Let {M;} be a net in L which is weak =-convergent to
Me&4. I |x(M)|=6:<¢, then for 0<<e~6:
(M) = %(M) | >5.
Hence we have tJ?(M Y|>€ and Me=L. That is, L is a closed subset of .# and thus L is

compact. Hence, it follows that for all x4, QEC"(.A/).
For each A=o,(x) let us put

L(A)=the ideal of A generated by {y—1"Ixy|y&A}.

Then A 'x&L(1), because that if there exist elements y, 2654 such that z2(y—A {xy)=—1"1x
then (zy)+A"1x~2"1x(2y)=0, i.e., A&0o,(x). Therefore L(A) is a proper ideal of A.
Let M(A) be a maximal ideal containing L(A). Hence M(X) is a modular maximal ideal
of A. Since

Jucw (Ax—2"% x%)=0,
we have 2(M(2))=A1. This shows that o.(x) is contained in x(.4)|J{0}.

Conversely, we assume that ?c(M Y==2, where M is a modular maximal ideal of A
(A50).
Then

L@ =22 fuQ ) =1=VasA  fula—2""xa) =0,

hence a—A~*xa=M and A !x is the unity element mod M.

Suppose that for some element y&=A
y+ A"y — A Txy=0.

Then y—A'xy=—2"1xe&=M which contradicts to fu(A *x)=1.
That is, for all y&=A4 y+21"1x—2"1xy+0, and thus 1o ,(x).

In consequence, we have
04(x) = {x(M) | M4} ) (0}
Therefore
1%l =sup | #(M) | =4(x).
IIEJ
Since

%MD | =] ful) | <l
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by (3—3) it is obvious that |[x||,=7,(x)<|lxll.

(iii) For all x, ye=A, 2&=C and M4
x4+ 9N (M) = fulx+3) = Ful) + Fu(9) = 2(M) + 5 (M),
QYNM) = fu %) =R fu(x) = 22 (M),
(9)" (M) = Ful29) =Fu() fu( ) =2(M) 3(M),

and thus the mapping

¢: A—arCo (M) (% 1—2)

(which is the Gelfand transformation) is an algebra homomorphism (see(iii) of Example 2. 1

in section 2). In particular, the kernel of ¢ is the set ,,Q JM * /77

Let A be a commutative C*-algebra without unity, and let A; be a C*-algebra amitification
of A (see 4° in section 1).
We shall put

4 =the modular maximal ideal space of A.
4 1=the maximal ideal space of A,.

Lemma 3.3. There is a homeomorphism
¢Z M  ad {A} P— 1

Proof. For each Mes4;—{A} there is a unique algebra epimorphism fy:A4;——C such
that ker fy=M. Since AZ M, there exists an element x&=A—M such that f(x)=2130.

Hence we have fy(4™'x)=1.
Put

M=ANM

Athen it is easy to see that {g¢—A"lxa|as=A} M. In particular, M is a medular maximal
ideal of A. In fact, it is clear that A~1x is a unity mod M.
Assume that M is not maximal in A, then there exists a proper ideal A of A such that
MEMSA.
Put
L=the ideal of A; generated by MM
— 25 —
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Then, it is a proper ideal of A,, because that if L=A; then there exist two elements
ac=M and x&M such that
a+x=e‘,,
and that
x=ey,—aEM=>fila) =1==0VbEA b~ ab=M
e M () abes M) ==> A= X1,

Therefore, we have a contradiction to the maximality of M, and M must be maximal in

A. Now, we define
¢: My~ {A)— A

by ¢(M)=M. Then inverse ¢! of ¢ is defined as follows.
For each Me&=# and the algebra epimorphism fy: A——C, we define f3: A;—— C by

Su(leq, +2) =2+ f3(x).

where A(%0)=C and %cA. Then fj is an algebra epimorphism. We put M=ker 3y and
define ¢~ (M)=M. It follows that

G=14 . 9=y

As is well-known, 4; is a compact Hausdorff space for the weak*-topology (or the Gelfand
topology). Therefore #;—{A} is a locally compact space, and by (i) of Lemma 3.2

4 is also a locally compact space for the weak®-topology.

Next, we want to prove that ¢ and ¢! are contimuous to the weak*-topologies. For each
Me=4;—{A} let U(M) be an open neighborhood of ¢(M)=M in#. Then there are
X1, X3,y %, of A and Uy, Up- U, such that

B UD N N2 U (A =U M),

where U; (i=1,2-,%) is an open neighborhood of :’c\;(M Yin C.
is easy to see that Noting that fy=/uld it

$IUWM) =571 UD N5 U N (i~ {4)},
which is an open subset of .#;— {A}. Hence ¢ is continuous.
Similary, we can prove that ¢! is continuous. ///

Note that #; and .#|J{A} are homeomorphic,
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Theorem 3.4. Let A be a commutative C*-algebra without unity, and let .# be the
modular maximal ideal space of A. Then, the Gelfand transformation maps A isometrically
and *-isomorphically onto C°(.#), where C°(.#) is the commutative C*-algebra consisting
of all bounded continuous functions vanishing at infinity from # to € (see(ii} of Lemma
3.2).

Proof. Let A; be a C*-algebra unitification of A, and let .#; be the maximal ideal
space of A;. Since every element x of A; is normal we have r,,(x)=|x] by 2° in section
1. By 4° in section 1 for x4 |[|xl|=|x|, and thus r,(x)=|x]|. Hence, by (ii) of Lemma
3.2 we have [|#ll.=r4(x) for all A, and thus [|¥l.=|l2l|. Therefore, by (i) and (iii)

of Lemma 3.2 the the mapping
7t Ao (M) (2i——s1)

is an isometric algebra homomorphism.

Recall the mapping (3—1)
9 Ai——sC(y) (— 1),
which is isometric, *-isomorphic and onto. Noting that fy=rfglA ‘where f/!(]ﬁ)xM (for

*
notations see Lemma 3.3) and ¢(a*)=¢(x)*(i.e., P ) we see that 7 is a *-monom-

orphism (Yz&=A ¢(x) | £=79(x)). We put

SlA=0
|

Co(n= [recian 3 : ,
@ Ve>0 (Meu,||f(M)|2€)} is compact.

Then, by the isomorphism ¢ in (3—1) there exists only one element x-+le,,&EA4;(xA,
AE=C) such that (x+Ae)"=f for each f&C°(A4,).

But, f(A)=0 implies that A=0 because that Q(A):"EO and QA, (A)=1.

Therefore, we have
A=(A) = (x| x=A) =C° (A)).

By (ii) of Lemma 3.2 (or by Lemma 3.3), we see that .#|){A} is the Alexandroff
one-point compactification of . ({11)). Hence each bounded continuous function g=Ce (M)
can be extended to a bounded continuous function defined on 1) {A} setting g({4})=0.

Hence we have

Co (M) =C" (4 J{A]).
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Let ¢: A, —#]{A} be the homeomorphism in Lemma 3.3.

Define
7 Co(dy) —C*(H | J{AD)

by t(f)=fo¢"! for each fe=C°(#4;), Then 77/(g)=go¢ for each ge=C° (4| {A}),
which is the inverse of .
It follows that 7 is an algebra isomorphism.

Hence we have isomorphisms

Az=Ce (M )=Co (M| LA))=C(A).
In consequence

9 AeerCo (M) (%1—%)

is isometric, *-isomorphic and onto. ///

4. States and *-Representations

For a Hilbert space H the set B(H) of all linear bounded operators from H to itself
is a C*-algebra as follows.

As is well-known, for each T'&B(H) its norm is defined by

HTH=I§39=IHT4¢H (x=H).
For each Te=B(H) T* is defined by

(Tx, )= (x,T*y) (x,yH),

where ( , ) is the given inner product in H ((12)).
For each T&B(H) the set

W(T)={(Tx,x) |x=H, |lxll=1}

is called the numerical range of T.
Under our situation the following are known ({1))

(i) W(T) is a convex subset of €
(ii) U(T)C—W?“T—) ...... (4—1
(iii) If T is normal (TT*=T*T) then conv o(T)=W(I),
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where conv ¢(T) is the convex hull of ¢(7") and W(T) is the closure in C of W (T).
Definition 4.1. Let 4 be a C*-algebra with unity and let // be a Hilbert space.

A *_homomorphism
w: 44 ......... )B(IJ)

is. called a *-representation of A on H.
If ¢(ea)=1g (e, is the unity of A and 14: H-~-H is the identity map) then ¢ is said
to be unital.
If ¢ is a *-monomorphism (injective), then ¢ is called a faithful *-representation of A
on H.

Definition 4.2. Let A be a C*-algebra, and let f: A-——C be a linear form,
If for all a4

S(a*a)>0

then f iggcalled a state defined on A.
Let f: A—C be a state on A.
If A has a unity e and f(e)=1, then f is said to be normalized,
In particular, for any element ac=A there exists a normalized state f such that F(a*a)
={la*al|.
To prove the Gelfand-Naimark representation theorem ((1]), for a C*-algebra A with

unity it is general to construct a unital *-repregentation ¢: A—B(H) and a vector «&=H

for a given state f on A such that

f(a)::(so(a)u,u) ................................................ (4_.-_2)

for all a==A, where ( , ) is the given inner product in #.
In this case, H,( , ) and » are defined as follows.

At first, define an inner product < , > in A by
<z, y> =f(y*x).

Next, we put
N={(s=AIVysA <x,y>=0)

and

E=A/N
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Define an inner product ( , ) in £ by
(295')"::<x;y>;

where for the canonical map 7: A——A/N=E Z=9(x).

It is easy to prove that ( , ) is an inner product. Thus E is a pre-Hilbert space.

Let H be the completion of Z. That is, we regard £ as a dense linear subspace of the
Hilbert space H. Define

@ A——sB(H)  cereermeeeremeeeni e (4—3)
by ¢(a)Z=(ax)” for all a=A and xc=H.
In particular,

U=@gy=esp+N,
where e, is the unity of A.

Definition 4.3. Let ¢: A——B(H) be a *-representation of 4 on H.
If there exists an elements #c=H such that

{p(a)u]ac=Aj}

is a dense subset of i then ¢ is said to be cyclic and u is called a cyclic vector for the
representation .

Corollary 4.4. The unital *-representation ¢: A-—-B(H) in (4-3) is cyclic.
Proof. It is clear that # is a cyclic vector of the representation ¢ hecause that

{p(ula=Al=EF

and E=H. ///

Lamma 4.5. Let ¢: A—B(H) and ¢: A——B(K) be cyclic *-representations with
cyclic vectors # and v, respectively.
If for all ac=A

(pla@)u, u)=(¢p(a)v,v)

then there is a unitary operator W: H-—K which is isometric, where if (0(a)u,#)=0,

pladu=0
Proof. We put

H,={p(@)u|ac=A) and K,={p(a)o|ac=A)

Then, our hypothesis H,=H and K,=XK we define
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W,: Hy—K,

by W, (u)=v and W, (¢(a)u)=¢(a)v for all acA. Then W, is bijective and linear, In
fact,

W (¢(a)u) =¢(a)o=0=2p(a)u=0
because that (¢(a)#, )= (¢(a)v,v)=0, and

Wo((@lar) +¢(aa))u) =W (¢(a;+a)u)=¢(a;+az)v
=g(a)v+Pado=W (@(a)u) + W (p(as)u)).

Next, we define W, * by

W.(p(a)u), 4(0)v)=(p(a)u, W *(b)v)),
where a,b=A. Then W *: K,—H, is also linear and bijective. Since

W (plaYu), ¢(b)v)=(d(a)r, ¢(B)v)=(d(b*a)v,v)
= (p(b*a)u, ) = (p(a)u, ¢(b)u)

we have W *({(8)v)=p(d)u. Therefore
Wo*Wo:: 1s0s WoWa*: lios
and thus W, is a unitary operator. Moreover, since

Haehi2= (ple)u, u) = (P (en)v, v) =]o|]3,
Ho(a)ullt=(pa)n, o(a)u))=_(p(a*a)u, u)=(P(a*a)v,v)
=((@)v, ¢(a)p)={¢(a)|?

W is an isometric isomorphism. ///

Thereom 4.6, Let ¢: A—-B(H) and ¢: A—B(K) be *-representations of A which
are induced from a given state f on A (see(4-3)).
Then ¢ and ¢ are unitary equivalent (i.e., there exists a unitary operator W: H——K,
which is isometric).

Proof. By corollary 4.4 the representations ¢ and ¢ are cyclic.
We put

u=a cyclic vector of ¢, v=a cyclic vector of ¢,
then by (4-2) we have

f(a)=(p(a)u,u) = (¢(a)v,v)
-_— 31 =
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for all ae=A. Therefore, by Lemma 4.5 we have a unitary operator W: H——K, which

is isometric. ///

Definition 4.7. Let A be a C*-algebra with unity e,.
We put

2. =the set of all normalized states on A.

For each ac=A we write
@=L a)={a)| fE5}

which is called the numerical status of a in A.
Let A be a C*-algebra with unity, and let B be a closed C*-subalgebra of A containing e,.

For a linear form f: A-—C, since

S is a state<=>f is continuous and ||f}|=f(es) ((1)),
by using the Hahn-Banach theorem ((11)) we can prove that

Ta(B) = T a(B)  creererirereeieii it (4-4)
for all 4B. Futhermore, if a€&SA is hermitian (2==a*) we can prove that

E (a) :CODV(G) ................................................... (4-5) (Elj)_

Theorem 4.8. Let A4 be a C*-algebra with unity e,.
Then the followings hold.

(i) For a C*-algebra B with unity es, if ¢: A—sB is a *-monomorphism such that
9(e4)=ep, then for all a=A

2 (@)= Zs(p(a)).

(ii) For a Hilbert space H if ¢: A—B(H) is a faithful unital *-representation of A
on H then for all ac=A

Zala*a)=W(p(a*a)) (see(4-1))

Proof. (i) By 5° and (ii) of Proposition 3.1 ¢: A=p(A) is an isometric isomorphism
and ¢(A) is a closed C*-subalgebra of B containing es, Hence by (4-4)

Loy (pla))=Z s(¢(a)).
An one-to-one corresponding

L4 = D
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is defined by f=fop for f&%¢(A). By Propesition 3.1, since ¢ is continuous,
f =f o ¢EZA'
Conversely, for each fe£5, f=f0o0! is a state on 9(A4). It follows that for all a=A

Z @)= Zeo> (9(@))=Za(¢(a)).

(ii) For all ac=A it is important to see that a*s and @(a*a) are hermitian elements
in A and in B(H), respectively. Since each hermitian element is normal. by (4-1) we
have

conva({p(a*a))=W(p(a*a))
On the other hand, by (4-5),

conve (p(a*a)) = Za(p(a*a)).
By (i), Zs ¢(a*a)= L (a*a), and thus

Salatay=W(p(a*a)). ///
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