C*-Algebras and *-Representations

by

Young-Soo Lee

0. Introduction

Theory of C^* -algebras is a branch of classical analysis and it has been developed since approximately 1900. C^* -algebras could be characterized as a special class of Banach algebras by means of a simple system of axioms and play a basic role in the study of the representations of a very extensive class of involutive Banach algebras. The study of C^* -algebras consists of two parts: one is related to the inherent structure of algebras ((1),(3),(12),(13)) and the other is concerned with the representations of a C^* -algebra ((5),(8),(12),(17)).

The purpose of this paper is to prove some properties of C^* -algebras without unity (section 3) and to study on *-representation (section 4).

In section 1, we describe some important terminologies and notations which are needed in section 3 and 4. In section 2, we construct three kinds of C*-algebras in Example 2.1. It is noted that the third example is in connection with the Theorem 3.4. The purpose of section 3 is to prove Theorem 3.4 which states a property of C*-algebras without unity.

Proposition 3.1, Lemma 3.2 and Lemma 3.3 are preliminaries to the proof of Theorem 3.4. Theorem 3.4 states that if M is a modular maximal ideal space of a C^* -algebra A and $C^{\circ}(\mathcal{M})$ is a set of bounded continuous functions on \mathcal{M} vanishing at infinity, then a map $A \longrightarrow C^{\circ}(\mathcal{M})$ $(x \longrightarrow \hat{x})$ is isometric, surjective and *-isomorphic.

In section 4, we prove two results (Theorem 4.6 and Theorem 4.8) on *-representation and it is particularly observed that

$$\sum_{A} (a^*a) = \overline{W(\varphi(a^*a))}.$$

1. Preliminaries

Let A be a Banach algebra. A mapping $x \longrightarrow x^*$ of A into A is called an *involution* on A if it satisfies the following properties, for all $x, y \in A$ and $\lambda \in C$:

$$(x+y)^* = x^* + y^*$$

$$(\lambda x)^* = \overline{\lambda} x^*$$

$$(xy)^* = y^*x^*$$

$$x^{**} = x.$$

where C is the set of all complex numbers.

A Banach algebra with an involution is sometimes called a <u>Banach *-algebra</u>. In a Banach * algebra A, if for all $x \in A$

$$||x^*x|| = ||x||^2$$

holds, then A is called a C*-algebra.

Let A be a C*-algebra. For each $x \in A$.

 $\gamma_A(x)$ (or $\gamma(x)$) denotes the spectral radius of x, and $\sigma_A(x)$ (or $\sigma(x)$) denotes the spectrum of x.

The following properties are well-known ((1), (3), (12), (13)).

1° For all $x \in A$, $||x^*|| = ||x||$

2° If A has a unity and $xx^*=x^*x$ (i.e, x is normal) $(x \in A)$, then $\Upsilon_A(x)=||x||$.

3° If A has a unity and $x=x^*$ ($x\in A$) (i.e., x is hermitian or self-adjoint) then $\sigma_A(x)\subset R$.

For a C^* -algebra A without unity, let A_i consist of all ordered pairs (x,α) , where $x \in A$ and $\alpha \in C$. Define the vector space operations in A componentwise, define the multiplication in A_i by

$$(x,\alpha)$$
 $(y,\beta)=(xy+\alpha y+\beta x, \alpha\beta).$

and define

$$||(x,\alpha)|| = ||x|| + |\alpha|, e_A = (0,1).$$

Then $(A_1, || ||)$ is a Banach algebra with unity e_{A_1} ((12)).

In this case, we can regard A as a subalgebra of A_1 and as an ideal of A_1 .

Therefore, for each $x \in A_1$ the mapping

$$T_x: A \longrightarrow A \ (Va \in A, T_x(a) = xa)$$

is a linear bounded operator. We put, for each $x \in A_1$,

$$|x| = |T_x|$$

then the following is known ((1), (15), (16)).

 4° For each $(a, \alpha) \in A_1$ we put

$$(a, \alpha)^* = (a^*, \bar{\alpha})$$
:

- (a) $(A_{I}, | \cdot | \cdot |)$ is a C^* -algebra with unity.
- (b) For all $a \in A$, ||a|| = |a|.
- (c) Embedding $(A, || ||) \longrightarrow (A_I, ||)$ is isometric.

 $(A_1, | |)$ (or A_1) is called a C^* -algebra unitification of A.

Furthermore A is a closed linear subspace of A_I .

Let A and B be C*-algebras (both with unity or both without unity).

An algebra homomorphism

$$\varphi \colon A \longrightarrow B$$

is called a *-homomorphism if for all $a \in A$, $\varphi(a^*) = \varphi(a)^*$.

Proposition 1.1. If A and B are C*-algebras with unity, and if $\varphi: A \longrightarrow B$ is a *-homomorphism such that $\varphi(e_A) = e_B$, then $||\varphi(a)|| \le ||a||$ for all a in A and φ is continuous, where e_A and e_B are unities of A and B, respectively.

Proof. If $a-\lambda e_A$ is invertible in A, then $\varphi(a-\lambda e_A)=\varphi(a)-\lambda e_B$ is invertible in B. Hence $\sigma_B(\varphi(a))\subset\sigma_A(a)$ and $\gamma_B(\varphi(a))\leq\gamma_A(a)$.

If a is self-adjoint then so is $\varphi(a)$, and 2° yields

$$||\varphi(a)|| = \gamma_n(\varphi(a)) < \gamma_n(a) = ||a||.$$

If $a \in A$ is arbitrary then a^*a is self-adjoint, therefore

$$||\varphi(a)||^2 = ||\varphi(a)^*\varphi(a)|| = ||\varphi(a^*a)|| \le ||a^*a|| = ||a||^2$$

thus $||\varphi(a)|| \leq ||a||$. ///

In particular, the following property is well-known ([1], [12])

5° Let A and B be C*-algebras with unity, and let $\varphi: A \longrightarrow B$ be a *-homomorphism and injective. Then φ is isometric.

2. Examples

In this section we consider three illustrations of C^* -algebras.

Example 2.1. (i) Let T be a nonempty set. We put

 $B(T) = \{x: T \longrightarrow C \mid x \text{ is bounded, i.e., } \mathcal{A}Ms.t. \mid x(t) \mid \leq M \forall t \in T\}$ and define

$$||x||_{\infty} = \sup_{t=T} |x(t)|$$

for all $x \in B(T)$. Then B(T) is a commutative C^* -algebra with unity.

Proof. For all $x, y \in B(T)$ and $\lambda \in C$ define the followings:

$$(x+y)(t)=x(t)+y(t), \quad xy(t)=x(t)y(t).$$

 $(\lambda x)(t)=\lambda x(t), \quad (t \in T).$

Then, with the given norm $\|\cdot\|_{\infty}$ it is clear that B(T) is a normed algebra over C.

Let $\{x_n | n=1, 2, ...\}$ be a Cauchy sequence in B(T). i.e., for each $\varepsilon > 0$ there exists N > 0 such that for n, m > N

$$||x_n-x_m||_{\infty}<\varepsilon$$
.

This means that for all $t \in T$ $|x_n(t) - x_n(t)| < \varepsilon$. Therefore, for each $t \in T$ $\{x_n(t) | n = 1, 2, ...\}$ is a Cauchy sequence in C. Since C is a Banach space there exists a limit $y_t \in C$ such that $x_n(t) \longrightarrow y_t$ for all $t \in T$. It is easy to prove that the set $\{y_t | t \in T\}$ is bounded. Hence, the mapping

$$x: T \longrightarrow C$$

defined by $x(t) = y_t$ for all $t \in T$ is bounded. It follows that $x \in B(T)$ and $x_n \longrightarrow x$ in B(T), because that

$$|x(t)-x_n(t)|=|y_n-x_n(t)|<\varepsilon$$

implies $||x-x_n||_{\infty} < \varepsilon$.

In particular, $||1||_{\infty}=1$ (1: $T \longrightarrow C$ s.t.1(t)=1), and thus B(T) is a commutative Banach algebra with unity, because that $||xy||_{\infty} \le ||x||_{\infty}||y||_{\infty}$.

Next, define for each $x \in B(T)$

$$x^*: T \longrightarrow C$$

by $x^*(t) = \overline{x(t)}$ (the conjugate of x(t)), then it is easy to prove that for $x, y \in B(T)$ and $\lambda \in C$

$$x^{**}=x$$
, $(x+y)^{*}=x^{*}+y^{*}$, $(\lambda x)^{*}=\overline{\lambda}x^{*}$, $(xy)^{*}=y^{*}x^{*}=x^{*}y^{*}$, $||xx^{*}||_{-}=||x||^{2}=||x^{*}||^{2}$.

In consequence, B(T) is a commutative C^* -algebra with unity. ///

(ii) Let T be a topological space. Then, by (i)

$$B(T) = \{x: T \longrightarrow C \mid x \text{ is bounded }\}$$

is a commutative C*-algebra with unity. Moreover,

$$C^{\infty}(T) = \{x \in B(T) \mid x \text{ is continuous}\}$$

is a closed C^* -subalgebra of B(T) containing unity. If T is completely regular, then $C^*(T)$ separates points of T.

Proof. Suppose a Cauchy sequence $\{x_n\}$ in $C^{\infty}(T)$. By(i), since B(T) is a Banach space there exists a limit $x \in B(T)$ such that $x_n \longrightarrow x$.

Noting that if x_n is continuous and bounded, then $x_n \longrightarrow x$ means that x_n converges uniformly to x, and thus x is also a bounded continuous function, it follows that $x \in C^{\infty}(T)$. Therefore, $C^{\infty}(T)$ is a closed subset of B(T). By the same way as in the proof of (i), it is easy to prove that $C^{\infty}(T)$ is a commutative C^* -algebra with unity.

Next, assume that T is a completely regular space. Each single point of T is a closed subset of T. For two different points $t_1 \neq t_2$ in T, there is a continuous function

$$x: T \longrightarrow R \subset C$$

such that $x(t_1)=0$, $x(t_2)=1$ and $0 \le x(t) \le 1$, by the definition of completely regularity, where R is the set of all real numbers. Hence $x \in C^{\infty}(T)$, and $C^{\infty}(T)$ separates points of T. ///

(iii) Let T be a locally compact space. Let

 $C^{\circ}(T) = \{x \in C^{\infty}(T) \mid x \text{ vanishes at infinity i.e., } V_{\varepsilon} > 0 \}$ is compact. Then $C^{\circ}(T)$ is a commutative closed C^{*} -subalgebra. If T is locally compact and Hausdorff, then $C^{\circ}(T)$ separates points of T.

Moreover, $C^{\circ}(T)$ has a unity if and only if T is compact.

Proof. At first, we note that

 $x \in C^{\circ}(T) \iff$ supp x = the closure of the set $\{t \in T | x(t) \neq 0\}$ is compact.

Also we know that each $x \in C^{\circ}(T)$ is a bounded continuous function, and $C^{\circ}(T) \subset C^{\bullet}(T)$. For a Cauchy sequence $\{x_n\}$ in $C^{\circ}(T)$ there exists $x \in C^{\bullet}(T)$ such that $x_n \longrightarrow x$ by (ii). We want to show that $x \in C^{\circ}(T)$, we put

$$L = \{t \in T \mid |x(t)| > \varepsilon\}.$$

Since $x_n \longrightarrow x$, there is a N such that $||x_N - x||_{\infty} < \varepsilon/2$. Also, we know that $\{t \in T \mid |x_N(t)| \ge \varepsilon/2\}$ is compact. Since L is a closed subset of $\{t \in T \mid |x_N(t)| \ge \varepsilon/2\}$, L is compact. Therefore, $x \in C^{\circ}(T)$. Hence it is obvious that $C^{\circ}(T)$ is a closed Banach subalgebra of $C^{\infty}(T)$. For each $x \in C^{\circ}(T)$, since $x^* : T \to C$ is defined by

$$x^*(t) = \overline{x(t)} \ (t \in T)$$

it follows that $x^* = C^{\circ}(T)$, and therefore $C^{\circ}(T)$ is a closed C^* -subalgebra of $C^{\circ}(T)$. It is clear that $C^{\circ}(T)$ is commutative.

If T is locally compact and Hausdorff then for $t_1 \neq t_2$ in T, there exists a continuous function

$$x: T \longrightarrow C$$

such that $x(t_1)=0$, $x(t_2)=1$ and $0 \le x(t) \le 1$ for all $t \in T$ by the Uryshon lemma. Moreover, by the Uryshon lemma, we may assume that supp $x=\{\overline{t \in T \mid x(t) \ne 0}\}$ is compact. Hence $x \in C^{\circ}(T)$, and $C^{\circ}(T)$ separates points of T.

It is obvious that

 $1 \subseteq C^{\circ}(T)$ (1: $T \longrightarrow C$: 1(t) = 1) $\iff T$ is compact, and thus our last statement in (iii) has been proved. ///

3. C*-Algebras Without Unity

Let A be a commutative C^* -algebra with unity. The Gelfand-Naimark theorem ((12)) says that there is an isometric, onto *-isomorphism

$$\varphi \colon A \longrightarrow C(\mathcal{M}) \ (x \longmapsto \hat{x})$$
 (3-1),

where \mathscr{M} is the maximal ideal space of A, $C(\mathscr{M})$ the commutative C^* -algebra consisting of all continuous functions from \mathscr{M} to C and \hat{x} the <u>Gelfand transform</u> of x. In this section, we prove some properties about C^* -algebras without unity. Throughout this section by a C^* -algebra we mean a commutative C^* -algebra

Proposition 3.1. Let A and B be C^* -algebras, and let $\varphi: A \longrightarrow B$ be a *-homomorphism. Then the followings hold:

- (i) For all $a \in A$, $||\varphi(a)|| \le ||a||$ and φ is continuous.
- (ii) $\varphi(A)$ is a closed C*-subalgebra of B.

Proof. (i) Let us put

 A_1 =a C*-algebra unitification of A

 B_1 =a C*-algebra unitification of B (see 4° in section I)

and let e_{A_1} and e_{B_1} identities of A_1 and B_1 respectively.

Define

$$\tilde{\varphi}: A_1 \longrightarrow B_1$$
(3-2)

by $\widetilde{\varphi}((x,\lambda)) = (\varphi(x),\lambda)$ for $x \in A$ and $\lambda \in C$. Then $\widetilde{\varphi}$ is an extension of φ to A_1 , i.e., $\widetilde{\varphi}$ is a *-homomorphism with $\widetilde{\varphi}(e_{A_1}) = e_{B_1}$.

Since $\tilde{\varphi}(x) = \varphi(x)$ for all $x \in A$, by Proposition 1.1 and 4° in section 1,

$$||\varphi(a)|| = |\tilde{\varphi}(a)| \le |a| = ||a||.$$

Hence φ is linear and bounded. That is, φ is continuous.

(ii) Ker $\tilde{\varphi}$ is a closed two side ideal of A_I by Proposition 1.1. Therefore $A_I/\text{Ker }\tilde{\varphi}$ is a C^* -algebra with respect to the quotient norm.

Define

$$\tilde{\varphi} \colon A_I / \text{Ker } \tilde{\varphi} \longrightarrow \tilde{\varphi}(A_I) \subset B_I$$

by $\tilde{\varphi}(x) = \tilde{\varphi}(x)$ for all $x \in A_1$. Then $\tilde{\varphi}$ is a injective *-homomorphism. By 5° in section 1. $\tilde{\varphi}(A_1)$ is a closed C*-algebra of B_1 .

Hence

$$\varphi(A) = \widetilde{\varphi}(A_1) \cap B$$

is a closed C^* -subalgebra of B. ///

Let A be a commutative Banach algebra without unity.

An ideal I of A is said to be <u>modular</u> if there exists an element $u \in A$ such that for all $a \in A$

$$a-au \in I$$
.

An element $a \in A$ is said to be quasi-regular if there exists an element $b \in A$ such that

$$a \circ b = a + b - ab = 0$$
.

For each $x \in A$ we define

$$\sigma_{\lambda}(x) = \{0\} \cup \{\lambda \in C | \lambda \neq 0 \text{ and } \lambda^{-1}x \text{ is not quasi-regular} \}$$

which is called the <u>spectrum</u> of x in A. Suppose that A is a commutative Banach algebra without unity, and assume that $f: A \longrightarrow C$ is an algebra epimorphism. Then by Proposition 3.1 f is continuous and $||f|| \le 1$.

Put

$$M = \{x \in A \mid f(x) = 0\}.$$

then M is an modular ideal of A, since f is an epimorphism there exists an element $e \in A$ such that f(e) = 1, That is, for all $x \in A$

$$f(x-x\cdot e) = f(x) - f(x) \ f(e) = 0.$$

and thus $x-xe \in M$.

In particular, M is a closed modular maximal ideal of A. In fact, we assume that M is not maximal, then there is a modular maximal ideal N such that $M \subset N$. For each element $a \in N-M$ there exists an element $b \in A$ such that ab+M=e+M, because that

$$f_{\mathbf{u}} \colon A/M \longrightarrow \mathbf{C}$$

defined by $f_M(a+M)=f(a)$ is a ring isomorphism. Hence $e \in N$ and we have N=A. It follows that M is maximal. Since f is continuous and $M=f^{-1}(0)$, M is a closed ideal of A.

In consequence, for each algebra epimorphism $f: A \longrightarrow C$, we see that

(note that each maximal ideal is closed).

(i) f is continuous with $||f|| \le 1$. (ii) the kernel M of f is a modular maximal ideal of A $\cdots (3-3)$

Conversely, we can prove that for each modular maximal ideal M of A there is an algebra epimorphism $f_{M}: A \longrightarrow C$ such that ker $f_{M}=M$. That is, if we put

 \mathcal{M} =the set of all modular maximal ideals of A \mathcal{X} =the set of all algebra epimorphisms from A to C,

then there is a bijective mapping:

$$\mathcal{A} \leftarrow \rightarrow \mathcal{X} \quad (M \leftarrow \rightarrow f_{\mathcal{U}}). \quad \dots \qquad (3-4)$$

Lemma 3.2. With the above notations the followings hold.

(i) $\mathscr{X} \cup \{0\} = \{f : A \longrightarrow C | f \text{ is a continuous linear form such that } f(xy) = f(x)f(y)\}$

is a weak *-compact subset of A', where A is a Banach algebra without unity and A' the dual space of A.

Therefore \mathscr{X} is locally compact for the weak *-topology. The set \mathscr{M} , equipped with the topology induced by \mathscr{X} , is called the modular maximal ideal space of A.

(ii) For each x∈A

$$\hat{x}: \mathcal{A} \longrightarrow C (\hat{x}(M) = f_{\mu}(x))$$

is continuous and vanishes at infinity, i.e., $\hat{x} \in C^{\circ}(\mathcal{M})$ (see (iii) of example 2.1 in §2.). In particular,

$$\sigma_A(x) = \hat{x}(\mathcal{A}) \cup \{0\}, \qquad ||\hat{x}||_{\infty} = r_A(x) \le ||x||,$$

where $r_A(x) = \sup\{|\lambda| | \lambda \in \sigma_A(x)\}$.

(iii) $A \longrightarrow C^{\circ}(\mathcal{M})$ $(x | \longrightarrow \hat{x})$ is an algebra homomorphism.

The kernel of this homomorphism is the radical of A, where the radical of A is the intersection of all modular maximal ideals of A.

Proof. (i) At first, we shall prove that if $f: A \longrightarrow C$ is a continuous and linear form such that f(xy) = f(x) f(y) and $f \not\equiv 0$, then f is an algebra epimorphism. There exists at least one element $a \in A$ such that $f(a) \neq 0$. In this case,

$$f \mid Ca(Ca \subseteq A) : Ca \longrightarrow C$$

is an abelian group isomorphism, and thus $f: A \longrightarrow C$ is an algebra epimorphism.

By (3-3) and (3-4) $\mathscr{X} \cup \{0\}$ is contained in the closed unit ball of A' which is weak *-compact by the Alaoglu-Bourbaki theorem([1]). Hence it will suffices to show that $\mathscr{X} \cup \{0\}$ is weak *-closed in A'. Suppose $\{f_i\}$ is a net in $\{0\} \cup \mathscr{X}$ which is weak *-convergent to $f \in A'$ (i.e., $V_X \in A$ $\lim |f_n(x) - f(x)| = 0$). Then for x, $y \in A$ and $\lambda \in C$,

$$\lim_{f_{i}} f(x+y) = \lim_{f_{i}} f(x) + \lim_{f_{i}} f(y) \Longrightarrow f(x+y) = f(x) + f(y)$$

$$\lim_{f_{i}} f(xy) = \lim_{f_{i}} f(x) f(y) = \lim_{f_{i}} f(x) \lim_{f_{i}} f(y) \Longrightarrow f(xy) = f(x) f(y)$$

$$\lim_{f_{i}} f(\lambda x) = \lambda \lim_{f_{i}} f(x) \Longrightarrow f(\lambda x) = \lambda f(x),$$

and thus $f \in \mathcal{X} \cup \{0\}$. Since $\mathcal{X} \cup \{0\}$ is Hausdorff and closed in a compact set it is obvious that $\mathcal{X} \cup \{0\}$ is a weak *-compact subset of A'.

- $\{0\}$ is a closed subset of A', and thus $\mathscr{X} = \mathscr{X} \cup \{0\} \{0\}$ is a locally compact subset for the weak *-topology.
 - (ii) Put

$$L = \{ M \in \mathcal{M} \mid |\hat{x}(M)| = |f_{\mathcal{M}}(x)| \ge \varepsilon \}$$

for some positive number $\varepsilon > 0$. Let $\{M_i\}$ be a net in L which is weak *-convergent to $M \in \mathcal{M}$. If $|\hat{x}(M)| = \varepsilon_i < \varepsilon$, then for $0 < \delta < \varepsilon - \varepsilon_i$

$$|\hat{x}(M_i) - \hat{x}(M)| > \delta.$$

Hence we have $|\hat{x}(M)| \ge \varepsilon$ and $M \in L$. That is, L is a closed subset of \mathcal{M} and thus L is compact. Hence, it follows that for all $x \in A$, $\hat{x} \in C^{\circ}(\mathcal{M})$.

For each $\lambda \in \sigma_A(x)$ let us put

$$L(\lambda)$$
 = the ideal of A generated by $\{y-\lambda^{-1}xy | y \in A\}$.

Then $\lambda^{-1}x \in L(\lambda)$, because that if there exist elements $y, z \in A$ such that $z(y-\lambda^{-1}xy) = -\lambda^{-1}x$ then $(zy) + \lambda^{-1}x - \lambda^{-1}x(zy) = 0$, i.e., $\lambda \in \sigma_A(x)$. Therefore $L(\lambda)$ is a proper ideal of A. Let $M(\lambda)$ be a maximal ideal containing $L(\lambda)$. Hence $M(\lambda)$ is a modular maximal ideal of A. Since

$$f_{\mu(1)}(\lambda^{-1}x-\lambda^{-2}x^2)=0$$

we have $\hat{x}(M(\lambda)) = \lambda$. This shows that $\sigma_A(x)$ is contained in $\hat{x}(A) \cup \{0\}$.

Conversely, we assume that $\hat{x}(M) = \lambda$, where M is a modular maximal ideal of $A(\lambda \neq 0)$.

Then

$$f_{\mathbf{M}}(x) = \lambda \Longrightarrow f_{\mathbf{M}}(\lambda^{-1}x) = 1 \Longrightarrow Va \in A \quad f_{\mathbf{M}}(a - \lambda^{-1}xa) = 0,$$

hence $a-\lambda^{-1}xa \in M$ and $\lambda^{-1}x$ is the unity element mod M.

Suppose that for some element $y \in A$

$$y+\lambda^{-1}x-\lambda^{-1}xy=0$$
.

Then $y-\lambda^{-1}xy=-\lambda^{-1}x \in M$ which contradicts to $f_{\mathbf{H}}(\lambda^{-1}x)=1$.

That is, for all $y \in A$ $y + \lambda^{-1}x - \lambda^{-1}xy \neq 0$, and thus $\lambda \in \sigma_A(x)$.

In consequence, we have

$$\sigma_A(x) = \{\hat{x}(M) \mid M \in \mathcal{M}\} \cup \{0\}.$$

Therefore

$$||\hat{x}||_{\infty} = \sup_{\mathbf{M} \in \mathcal{M}} |\hat{x}(\mathbf{M})| = r_{\mathbf{A}}(x).$$

Since

$$|\hat{x}(M)| = |f_{\mathbf{H}}(x)| \leq ||x||$$

by (3-3) it is obvious that $||\hat{x}||_{\bullet} = r_A(x) \le ||x||$.

(iii) For all $x, y \in A$, $\lambda \in C$ and $M \in \mathcal{M}$

$$(x+y)^{\hat{}}(M) = f_{H}(x+y) = f_{H}(x) + f_{H}(y) = \hat{x}(M) + \hat{y}(M),$$

$$(\lambda x)^{\hat{}}(M) = f_{H}(\lambda x) = \lambda f_{H}(x) = \lambda \hat{x}(M),$$

$$(xy)^{\hat{}}(M) = f_{H}(xy) = f_{H}(x) f_{H}(y) = \hat{x}(M) \hat{y}(M).$$

and thus the mapping

$$\psi \colon A \longrightarrow C^{\circ}(\mathcal{M}) \ (x \mid \longrightarrow \hat{x})$$

(which is the Gelfand transformation) is an algebra homomorphism (see(iii) of Example 2.1 in section 2). In particular, the kernel of ψ is the set M.

Let A be a commutative C^* -algebra without unity, and let A_I be a C^* -algebra unitification of A (see 4° in section 1).

We shall put

 \mathcal{M} = the modular maximal ideal space of A.

 \mathcal{M}_1 =the maximal ideal space of A_1 .

Lemma 3.3. There is a homeomorphism

$$\psi \colon \mathcal{M}_1 - \{A\} \longrightarrow \mathcal{M}$$

Proof. For each $\tilde{M} \subset \mathcal{M}_1 - \{A\}$ there is a unique algebra epimorphism $f_{\tilde{M}} : A_1 \longrightarrow C$ such that $\ker f_{\tilde{M}} = \tilde{M}$. Since $A \subset \tilde{M}$, there exists an element $x \subset A - \tilde{M}$ such that $f_{\tilde{M}}(x) = \lambda \pm 0$. Hence we have $f_{\tilde{M}}(\lambda^{-1}x) = 1$.

Put

$$M=A\cap \tilde{M}$$

then it is easy to see that $\{a-\lambda^{-1}xa \mid a \in A\} \subset M$. In particular, M is a modular maximal ideal of A. In fact, it is clear that $\lambda^{-1}x$ is a unity mod M.

Assume that M is not maximal in A, then there exists a proper ideal \overline{M} of A such that $M \subseteq \overline{M} \subseteq A$.

Put

L =the ideal of A_I generated by $M \cup \tilde{M}$

Then, it is a proper ideal of A_I , because that if $L=A_I$ then there exist two elements $a \in \overline{M}$ and $x \in \widetilde{M}$ such that

$$a+x=e_{A}$$

and that

$$x = e_{A_1} - a \in \tilde{M} \Longrightarrow f_{\tilde{M}}(a) = 1 \Longrightarrow V_b \in A \ b - ab \in \tilde{M}$$
$$\Longrightarrow b \in \tilde{M}((\cdot, \cdot)ab \in \tilde{M}) \Longrightarrow A = \tilde{M}.$$

Therefore, we have a contradiction to the maximality of \tilde{M} , and M must be maximal in A. Now, we define

$$\psi \colon \mathcal{M}_1 - \{A\} \longrightarrow \mathcal{M}$$

by $\psi(\tilde{M}) = M$. Then inverse ψ^{-1} of ψ is defined as follows.

For each $M \subseteq \mathcal{M}$ and the algebra epimorphism $f_{\mathcal{M}}: A \longrightarrow C$, we define $f_{\mathcal{M}}^{\infty}: A_1 \longrightarrow C$ by

$$f_{\alpha}(\lambda e_{\lambda}, +x) = \lambda + f_{\alpha}(x)$$
.

where $\lambda(\pm 0) \in C$ and $x \in A$. Then $f_{\widetilde{u}}$ is an algebra epimorphism. We put $\widetilde{M} = \ker f_{\widetilde{u}}$ and define $\psi^{-1}(M) = \widetilde{M}$. It follows that

$$\psi^{-1}\psi = 1_{\mathcal{M}_1 - \{A\}}, \quad \psi\psi^{-1} = 1_{\mathcal{M}_1}$$

As is well-known, \mathcal{M}_1 is a compact Hausdorff space for the weak*-topology (or the Gelfand topology). Therefore $\mathcal{M}_1 - \{A\}$ is a locally compact space, and by (i) of Lemma 3.2 \mathcal{M} is also a locally compact space for the weak*-topology.

Next, we want to prove that ψ and ψ^{-1} are continuous to the weak*-topologies. For each $\tilde{M} \subseteq \mathcal{M}_1 - \{A\}$ let U(M) be an open neighborhood of $\psi(\tilde{M}) = M$ in \mathcal{M} . Then there are x_1, x_2, \dots, x_n of A and $U_1, U_2 \dots U_n$ such that

$$\hat{x}_1^{-1}(U_1)\cap\cdots\cap\hat{x}_n^{-1}(U_n)\cap\mathscr{M}=U(M),$$

where U_i $(i=1,2\dots,n)$ is an open neighborhood of $\hat{x}_i(M)$ in C. is easy to see that Noting that $f_M = f_M^{\infty} | A$ it

$$\phi^{-1}(U(M)) = \hat{x}_1^{-1}(U_1) \cdots \cap \hat{x}_n^{-1}(U_n) \cap \{\mathcal{M}_1 - \{A\}\},\,$$

which is an open subset of $\mathcal{M}_1 - \{A\}$. Hence ψ is continuous.

Similarly, we can prove that ψ^{-1} is continuous. ///

Note that \mathcal{M}_1 and $\mathcal{M} \cup \{A\}$ are homeomorphic.

Theorem 3.4. Let A be a commutative C^* -algebra without unity, and let \mathscr{M} be the modular maximal ideal space of A. Then, the Gelfand transformation maps A isometrically and *-isomorphically onto $C^{\circ}(\mathscr{M})$, where $C^{\circ}(\mathscr{M})$ is the commutative C^* -algebra consisting of all bounded continuous functions vanishing at infinity from \mathscr{M} to C (see(ii) of Lemma 3.2).

Proof. Let A_I be a C^* -algebra unitification of A, and let \mathcal{M}_I be the maximal ideal space of A_I . Since every element x of A_I is normal we have $r_{A_I}(x) = |x|$ by 2° in section 1. By 4° in section 1 for $x \in A ||x|| = |x|$, and thus $r_A(x) = ||x||$. Hence, by (ii) of Lemma 3.2 we have $||\hat{x}||_{\infty} = r_A(x)$ for all $x \in A$, and thus $||\hat{x}||_{\infty} = ||x||$. Therefore, by (ii) and (iii) of Lemma 3.2 the the mapping

$$\eta: A \longrightarrow C^{\circ}(\mathcal{M}) (x) \longrightarrow \hat{x}$$

is an isometric algebra homomorphism.

Recall the mapping (3-1)

$$\varphi \colon A_1 \longrightarrow C(\mathcal{M}_1) \ (x | \longrightarrow \hat{x}),$$

which is isometric, *-isomorphic and onto. Noting that $f_{\mathcal{M}} = f_{\widetilde{\mathcal{M}}} | A$ where $\psi(\widetilde{M}) = M$ (for notations see Lemma 3.3) and $\varphi(x^*) = \varphi(x)^*$ (i.e., $\hat{x}^* = \hat{x}^*$) we see that η is a *-monomorphism ($Vx \in A \varphi(x) | \mathcal{M} = \eta(x)$). We put

$$C^{\circ}(\mathcal{M}_{1}) = \left\{ f \in C(\mathcal{M}_{1}) \mid \begin{array}{c} \textcircled{1} f \mid A \equiv 0 \\ \\ \textcircled{2} V_{\varepsilon} > 0 & \{\tilde{M} \in \mathcal{M}_{1} \mid |f(\tilde{M})| \geq \varepsilon\} \text{ is compact.} \end{array} \right\}$$

Then, by the isomorphism φ in (3-1) there exists only one element $x + \lambda e_{A_1} \in A_1(x \in A, \lambda \in C)$ such that $(x + \lambda e)^* = f$ for each $f \in C^{\circ}(\mathcal{M}_1)$.

But, $f(A) \equiv 0$ implies that $\lambda = 0$ because that $\hat{x}(A) \equiv 0$ and $\hat{e}_{A_I}(A) = 1$. Therefore, we have

$$A \cong \varphi(A) = \{ \hat{x} \mid x \in A \} = C^{\circ}(\mathcal{M}_1).$$

By (ii) of Lemma 3.2 (or by Lemma 3.3), we see that $\mathcal{M} \cup \{A\}$ is the Alexandroff one-point compactification of \mathcal{M} ([11]). Hence each bounded continuous function $g \in C^{\circ}(\mathcal{M})$ can be extended to a bounded continuous function defined on $\mathcal{M} \cup \{A\}$ setting $g(\{A\}) = 0$. Hence we have

$$C^{\circ}(\mathcal{A}) = C^{\circ}(\mathcal{A} \cup \{A\}).$$

Let $\psi: \mathcal{M}_1 \rightarrow \mathcal{M} \bigcup \{A\}$ be the homeomorphism in Lemma 3.3. Define

$$\tau \colon C^{\circ}(\mathcal{A}_{1}) \longrightarrow C^{\circ}(\mathcal{A} \bigcup \{A\})$$

by $\tau(f) = f \circ \psi^{-1}$ for each $f \in C^{\circ}(\mathcal{M}_{1})$, Then $\tau^{-1}(g) = g \circ \psi$ for each $g \in C^{\circ}(\mathcal{M} \cup \{A\})$, which is the inverse of τ .

It follows that τ is an algebra isomorphism.

Hence we have isomorphisms

$$A \cong C^{\circ}(\mathcal{M}_{1}) \cong C^{\circ}(\mathcal{M} | \{A\}) = C^{\circ}(\mathcal{M}).$$

In consequence

$$\eta: A \longrightarrow C^{\circ}(\mathcal{M}) (x \mapsto \hat{x})$$

is isometric. *-isomorphic and onto. ///

4. States and *-Representations

For a Hilbert space H the set B(H) of all linear bounded operators from H to itself is a C^* -algebra as follows.

As is well-known, for each $T \in B(H)$ its norm is defined by

$$||T|| = \sup_{x \in T} ||Tx|| \quad (x \in H).$$

For each $T \in B(H)$ T^* is defined by

$$(Tx, y) = (x, T*y) (x, y \in H),$$

where (,) is the given inner product in H((12)).

For each $T \subseteq B(H)$ the set

$$W(T) = \{(Tx, x) | x \in H, ||x|| = 1\}$$

is called the numerical range of T.

Under our situation the following are known ((1))

- (i) W(T) is a convex subset of C
- (ii) $\sigma(T) \subset \overline{W(T)}$

(iii) If T is normal $(TT^*=T^*T)$ then conv $\sigma(T)=\overline{W(T)}$,

where conv $\sigma(T)$ is the convex hull of $\sigma(T)$ and $\overline{W}(T)$ is the closure in C of W(T).

Definition 4.1. Let A be a C^* -algebra with unity and let H be a Hilbert space.

A *-homomorphism

$$\varphi \colon A \longrightarrow B(H)$$

is called a *-representation of A on H.

If $\varphi(e_A) = 1_H$ (e_A is the unity of A and 1_H : $H \longrightarrow H$ is the identity map) then φ is said to be *unital*.

If φ is a *-monomorphism (injective), then φ is called a *faithful *-representation* of A on H.

Definition 4.2. Let A be a C*-algebra, and let $f: A \longrightarrow C$ be a linear form. If for all $a \in A$

$$f(a*a) > 0$$

then f is called a state defined on A.

Let $f: A \longrightarrow C$ be a state on A.

If A has a unity e and f(e)=1, then f is said to be normalized.

In particular, for any element $a \in A$ there exists a normalized state f such that $f(a^*a) = ||a^*a||$.

To prove the Gelfand-Naimark representation theorem ([1]), for a C^* -algebra A with unity it is general to construct a unital *-representation $\varphi \colon A \longrightarrow B(H)$ and a vector $u \in H$ for a given state f on A such that

$$f(a) = (\varphi(a)u, u) \qquad \cdots \qquad (4-2)$$

for all $a \in A$, where (,) is the given inner product in H.

In this case, $H_{\bullet}(\cdot, \cdot)$ and u are defined as follows.

At first, define an inner product < , > in A by

$$\langle x, y \rangle = f(y * x).$$

Next, we put

$$N = \{x \in A \mid \forall y \in A < x, y > = 0\}$$

and

$$E=A/N$$

Define an inner product (.) in E by

$$(\tilde{x}, \tilde{y}) = \langle x, y \rangle$$

where for the canonical map $\eta: A \longrightarrow A/N = E$ $\tilde{x} = \eta(x)$.

It is easy to prove that (,) is an inner product. Thus E is a pre-Hilbert space.

Let H be the completion of E. That is, we regard E as a dense linear subspace of the Hilbert space H. Define

$$\varphi \colon A \longrightarrow B(H)$$
(4-3)

by $\varphi(a)\tilde{x} = (ax)^{\sim}$ for all $a \in A$ and $\tilde{x} \in H$.

In particular.

$$u = \tilde{e}_{A} = e_{A} + N$$
.

where e_A is the unity of A.

Definition 4.3. Let $\varphi \colon A \longrightarrow B(H)$ be a *-representation of A on H. If there exists an elements $u \in H$ such that

$$\{\varphi(a)u | a \in A\}$$

is a dense subset of H then φ is said to be <u>cyclic</u> and u is called a <u>cyclic vector</u> for the representation φ .

Corollary 4.4. The unital *-representation $\varphi: A \longrightarrow B(H)$ in (4-3) is cyclic.

Proof. It is clear that u is a cyclic vector of the representation φ because that

$$\{\varphi(a)u \mid a \in A\} = E$$

and $\bar{E}=H$. ///

Lamma 4.5. Let $\varphi: A \longrightarrow B(H)$ and $\psi: A \longrightarrow B(K)$ be cyclic *-representations with cyclic vectors u and v, respectively.

If for all $a \in A$

$$(\varphi(a)u,u)=(\varphi(a)v,v)$$

then there is a unitary operator $W: H \longrightarrow K$ which is isometric, where if $(\varphi(a)u, u) = 0$, $\varphi(a)u = 0$

Proof. We put

$$H_o = \{ \varphi(a)u | a \in A \}$$
 and $K_o = \{ \varphi(a)v | a \in A \}$

Then, our hypothesis $H_o = H$ and $K_o = K$ we define

$$W_a: H_a \longrightarrow K_a$$

by $W_o(u) = v$ and $W_o(\varphi(a)u) = \psi(a)v$ for all $a \in A$. Then W_o is bijective and linear, In fact.

$$W_a(\varphi(a)u) = \psi(a)v = 0 \Longrightarrow \varphi(a)u = 0$$

because that $(\varphi(a)u,u)=(\varphi(a)v,v)=0$, and

$$W_o((\varphi(a_1) + \varphi(a_2))u) = W_o(\varphi(a_1 + a_2)u) = \varphi(a_1 + a_2)v$$

= $\varphi(a_1)v + \varphi(a_2)v = W_o(\varphi(a_1)u) + W_o(\varphi(a_2)u)$,

Next, we define W_{\circ}^{*} by

$$(W_{a}(\varphi(a)u), \varphi(b)v) = (\varphi(a)u, W_{a}^{*}(\varphi(b)v)),$$

where $a, b \in A$. Then W_o^* : $K_o \longrightarrow H_o$ is also linear and bijective. Since

$$(W_o(\varphi(a)u), \ \psi(b)v) = (\psi(a)v, \ \psi(b)v) = (\psi(b^*a)v, v)$$

= $(\varphi(b^*a)u, u) = (\varphi(a)u, \ \varphi(b)u)$

we have $W_o^*(\phi(b)v) = \varphi(b)u$. Therefore

$$W_a * W_a = 1_{Ra}, \quad W_a W_a * = 1_{Ra},$$

and thus W_o is a unitary operator. Moreover, since

$$||u||^{2} = (\varphi(e_{\mathbf{A}})u, u) = (\psi(e_{\mathbf{A}})v, v) = ||v||^{2},$$

$$||\varphi(a)u||^{2} = (\varphi(a)u, \varphi(a)u)) = (\varphi(a^{*}a)u, u) = (\psi(a^{*}a)v, v)$$

$$= (\psi(a)v, \psi(a)v) = ||\psi(a)v||^{2}$$

W is an isometric isomorphism. ///

Thereom 4.6, Let $\varphi: A \longrightarrow B(H)$ and $\psi: A \longrightarrow B(K)$ be *-representations of A which are induced from a given state f on A (see(4-3)).

Then φ and ψ are unitary equivalent (i.e., there exists a unitary operator $W: H \longrightarrow K$, which is isometric).

Proof. By corollary 4.4 the representations φ and ψ are cyclic. We put

u=a cyclic vector of φ , v=a cyclic vector of ψ ,

then by (4-2) we have

$$f(a) = (\varphi(a)u, u) = (\psi(a)v, v)$$

for all $a \in A$. Therefore, by Lemma 4.5 we have a unitary operator $W: H \longrightarrow K$, which is isometric. ///

Definition 4.7. Let A be a C^* -algebra with unity e_A .

We put

 Σ = the set of all normalized states on A.

For each $a \in A$ we write

$$\Sigma(a) = \Sigma_A(a) = \{f(a) | f \in \Sigma\}$$

which is called the numerical status of a in A.

Let A be a C*-algebra with unity, and let B be a closed C*-subalgebra of A containing e_A . For a linear form $f: A \longrightarrow C$, since

f is a state
$$\iff$$
 f is continuous and $||f|| = f(e_A)$ ((1)),

by using the Hahn-Banach theorem ((11)) we can prove that

$$\Sigma_B(b) = \Sigma_A(b)$$
(4-4)

for all $b \in B$. Futhermore, if $a \in A$ is hermitian $(a=a^*)$ we can prove that

$$\Sigma(a) = \operatorname{conv}(a) \qquad \cdots \qquad (4-5) \quad ([1]).$$

Theorem 4.8. Let A be a C^* -algebra with unity e_A . Then the followings hold.

(i) For a C^* -algebra B with unity e_B , if $\varphi \colon A \longrightarrow B$ is a *-monomorphism such that $\varphi(e_A) = e_B$, then for all $a \in A$

$$\sum_{A}(a) = \sum_{B}(\varphi(a)).$$

(ii) For a Hilbert space H if $\varphi: A \longrightarrow B(H)$ is a faithful unital *-representation of A on H then for all $a \in A$

$$\sum_{\mathbf{A}} (a^*a) = \overline{W(\varphi(a^*a)})$$
 (see(4-1))

Proof. (i) By 5° and (ii) of Proposition 3.1 φ : $A \cong \varphi(A)$ is an isometric isomorphism and $\varphi(A)$ is a closed C^* -subalgebra of B containing e_B . Hence by (4-4)

$$\Sigma_{\varphi(A)}(\varphi(a)) = \Sigma_{\varphi}(\varphi(a)).$$

An one-to-one corresponding

$$\Sigma_A \leftarrow \rightarrow \Sigma_{P(A)}$$

is defined by $f = \tilde{f} \circ \varphi$ for $\tilde{f} \in \Sigma \varphi(A)$. By Proposition 3.1, since φ is continuous, $f = \tilde{f} \circ \varphi \in \Sigma_A$.

Conversely, for each $f \in \Sigma_A$ $\tilde{f} = f \circ \varphi^{-1}$ is a state on $\varphi(A)$. It follows that for all $a \in A$

$$\sum_{A}(a) = \sum_{\varphi(a)} (\varphi(a)) = \sum_{B} (\varphi(a)).$$

(ii) For all $a \in A$ it is important to see that a^*a and $\varphi(a^*a)$ are hermitian elements in A and in B(H), respectively. Since each hermitian element is normal, by (4-1) we have

$$\operatorname{conv}\sigma(\varphi(a^*a)) = W(\varphi(a^*a))$$

On the other hand, by (4-5),

$$\operatorname{conv}\sigma(\varphi(a^*a)) = \sum_{B} (\varphi(a^*a)).$$

By (i),
$$\sum_{B} \varphi(a^*a) = \sum_{A} (a^*a)$$
, and thus

$$\Sigma_A(a^*a) = \overline{W(\varphi(a^*a))}.$$
 ///

References

- S.K. Berberian: Lectures in Functional Analysis and Operator Theory, Springer-Verlag, 1974.
- S.K. Berberian and G.H. Orland: On the closure of the numerical range of an operator, Proc Amer. Math, Soc. 18, pp.499~503 (1967)
- 3. J. Kixmier: Les C*-algebras et leurs represtations. second edition, Paris: Gauthier-Villars (1969)
- 4. R.C. Douglas and C. Pearcy: On the spectral theorem for normal Operators, *Proc*, cambridge philos, Soc. 68, 393~400 (1970)
- 5. R. Godement: Sur la theoric des representations Unitaries Ann of Math (2) 53, pp. 68~124 (1951)
- 6. H.H Golastine: Weakly complete Banach spaces, Duke Math J. 4, pp.125~131 (1938)
- 7. P.R Halmos: Continuous functions of Hermitian Operators, Proc. Amer. Math. Soc. 31, pp. 130~132 (1972)
- 8. R.V. Kakutani: On the orthogonalization of operators representations. Amer. J. Math. 77. pp.600~620 (1955)
- 9. M. A Naimark: Normed Rings, Revised English edition, Translated from the Russian by Leo F. Boron. Groningen: Noordholl (1964)
- 10. C.E. Rickart: General theory of Banach algebras, Princeton, N.J.: Van Nostrand (1960)
- 11. H.L. Royden: Real Analysis, Macmillan Company, London (1968)
- 12. W. Rudin: Functional Analysis, McGraw-Hill, Inc.
- 13. S. Sakai: C*-algebras and W*-algebras, Springer-Verlag (1971)
- 14. J.T. Schwartz W*-algebras. Gordon and Breach (1967)
- J. Wermer: Banach algebras and analytic functions. Adv. Math. I. pp. 51~102 (1961)
- 16. K. Yosida: Functional analysis, Springer-Verlag (1965)
- 17. A.C. Zaanen: Linear analysis. Measure and integral, Banach and Hilbert space, linear integral equations. Amsterdam North-Holland (1953)

U-Seok College, Chonju (520) Korea.