The Moment Problem and Cn-Scalar Operators

  • Published : 1985.08.01

Abstract

We show that a bounded linear qperator, T, on a Banach space, X, is $C^{n}$-scalar if the sepuence {$\frac{k!}{(k+n)!}{\phi}(T^{k+n}x)$}$_{k=0}^{\infty}$ is positive-definite, for sufficiently many $\phi$ in $X^{\ast}$, x in X. We use this to show that $(T_{n}f)(t){\equiv}tf(t)+nJf(t)$, where $If(t)=\int_{0}^{1}f(s)ds$, is $C^{n}$-scalar on $L^{p}([0,1],v)$, for $1{\leq}p{\leq}\infty$, for a large class of measures, v. Other corollaries include the spectral theorem for bounded symmetric operators on a Hilbert space.

Keywords