Representation of Bounded Operators by Hellingers Integral*

by

Ismat Beg

>Abstract<

Bounded linear operators defined from a space with vector norm into (LF)-complete vector lattice are represented by Hellinger integration.

1. The Space $F(\tau, X)$

Suppose T is a non-empty set, τ an algebra of subsets of T. We shall denote with $A(\tau, X)$ the set of additive bounded functions defined on τ with values in complete vector lattice X. Let μ be a real valued positive additive function defined on τ . A function F in $A(\tau, X)$ is said to be μ -simple function if for all $A \varepsilon \tau$,

$$F(A) = \sum_{i=1}^{n} \mu(A \cap A_i) x_i \cdots (1)$$

where $x_i \in X$ and $\{A_i\}$ $i=1,2,\ldots n$ is a τ -partition of T. $S(\tau,X)$ denotes the family of μ -simple functions.

With order relation: $F_1 \leq F_2$ where $F_1(A) \leq F_2(A)$ for all $A \varepsilon \tau$, the space $A(\tau, X)$ becomes a complete vector lattice, and |||F||| = |F(T)| is a vector seminorm on this space. Define $F(\tau, X) = \{F: F \varepsilon A(\tau, X) \text{ and there exists a sequence } (F_n)_{n \varepsilon N}, F_n \varepsilon S(\tau, X), \text{ such that } (\theta) - \lim |||F_n - F||| = 0\}.$

Let Y be a complete vector lattice and m a positive additive function defined on τ with values in $(X,Y)^{\tau}$ -the space of regular operators defined on X with values in Y. If $F \in S(\tau,X)$, (given in form (1)), then

$$||F|| = \sum_{i=1}^{n} m(A_i) (|X_i|)$$

is a vector seminorm on $S(\tau, X)$. For functions in $S(\tau, X)$ we define an integration of Hellinger Type:

^{*} Mathematics subject classifications (1980): Primary 47A67; Secondary 47B38, 47B55, 46B99, 28B99.

$$\int_{-\pi}^{\pi} \frac{dmdF}{d\mu} = \sum_{i=1}^{n} m(A_i) (x_i) \qquad (2)$$

where F is given in the form (1). It can be easily proved that

$$\left| \int \frac{dmdF}{d\mu} \right| \le ||F|| \qquad (3)$$

For more details, we refer to R. Cristescu (1) and F. Riesz and B.S. Nagy (3).

Remark (a) We can prove using Theorem 6.3 of Kawai (2) that in a (LF)-vector lattice with (θ) -continuous or regular topology, any sequence $(X_n)_{n\in\mathbb{N}}$ of elements of X is (θ) -convergent, if

$$(\theta)-\lim_{n\to\infty}(X_k-X_{n_k})=0$$

for every subsequence $(x_{n_k})_{k \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$.

2. Bounded Operators on the Space $F(\tau, X)$

In what follows X will be a σ -regular complete vector lattice whereas Y will be a σ -regular (LF)-complete vector lattice.

Proposition 1. If a function m has property

$$m(A) \leq \mu(A) W$$
,(4)

for any $A\varepsilon\tau$ and $0 \le W\varepsilon(\mathscr{X}, \mathscr{Y})^r$ -the space of (θ) -continuous regular operators, then integration (2) holds for any $F\varepsilon F(\tau, X)$ and retains its property of linearity and positivity.

Proof. Let $F \in F(\tau, X)$ then there exists a sequence $(F_n)_{n \in \mathbb{N}}$, $F_n \in S(\tau, X)$ such that $(\theta) - \lim_{n \to \infty} ||F_n - F||| = 0$.

It follows that, $(\theta)-\lim_{k\to\infty} ||F_k-F_{n_k}||=0$ for any subsequence $(F_{n_k})_{k\in\mathbb{N}}$ of $(F_n)_{n\in\mathbb{N}}$. Using inequality (4), it implies $(\theta)-\lim_k ||F_k-F_{n_k}||=0$ for any subsequence $(F_{n_k})_{k\in\mathbb{N}}$ of $(F_n)_{n\in\mathbb{N}}$.

So,
$$\left|\sum_{i=1}^{n} \mu(A_i^{k})(x_i^{k})\right| \xrightarrow{\theta} 0 \text{ in } X \text{ implies } \sum_{i=1}^{n} m(A_i^{k})(|x_i^{k}|) \xrightarrow{\theta} 0 \text{ in } Y.$$

Using inequality (3), we have

$$(\theta)-\lim_{\underline{k}\to\infty}\Big|\int_{\underline{T}}\frac{dm\ d(F_{\underline{k}}-F_{n_{\underline{k}}})}{d\mu}\Big|\leq (\theta)-\lim_{\underline{k}\to\infty}||F_{\underline{k}}-F_{n_{\underline{k}}}||=0.$$

Therefore.

$$(\theta)-\lim_{\underline{h}\to\infty}\left|\int_{T}\frac{dmdF_{\underline{h}}}{d\mu}-\int_{T}\frac{dm\ dF_{n\underline{h}}}{d\mu}\right|=0.$$

Remark (a) of Section 1, implies that the sequence $\left(\int_{T} \frac{dm \ dF_n}{d\mu}\right)_{n\in\mathbb{N}}$ is (θ) -convergent, since Y is σ -regular (LF)-complete vector lattice. Now put

$$(\theta)-\lim_{n\to\infty}\int \frac{dm\ dF_n}{d\mu}=\int_{T}\frac{dm\ dF}{d\mu}, \quad \cdots$$
 (5)

Inequalities (3) and (4) imply that, the limit in (5) is independent of the choice of the sequence $(F_n)_{x,y}$. Obviously integral (5) is a positive linear operator defined on $F(\tau, X)$.

It is noted that if F_X is a vector space with a vector seminorm (with values in X) and U a a linear operator, which maps F_X into complete vector lattice Y, for which there exists a positive operator $W\varepsilon(X,Y)_{\theta}^{r}$ such that

$$|U(F)| \le (W|||F|||)$$
.(6)

then U is bounded.

Proposition 2. Let m be a positive additive function on τ with values in the space (X,Y)', satisfying the condition $m(A) \leq \mu(A)W$ for each $A\varepsilon\tau$ and $0\leq W\varepsilon(X,Y)'$, then the formula

$$U(F) = \int \frac{dm \ dF}{d\mu}, \qquad (7)$$

defines a bounded positive linear operator on $F(\tau, X)$ with values in Y.

Proof. First of all suppose that F is μ -simple function given by

$$F(A) = \sum_{i=1}^{n} \mu(A \cap A_i) x_i \text{ for any } A \in \tau.$$

Then

$$|U(F)| = \left| \int_{T} \frac{dm \ dF}{d\mu} \right| = \left| \sum_{i=1}^{n} m(A_i) (x_i) \right|$$

$$\leq \left| \sum_{i=1}^{n} \mu(A_i) W(x_i) \right| \leq W \left| \sum_{i=1}^{n} \mu(A_i) (x_i) \right| = W(|||F|||).$$

Thus

$$|U(F)| \le W(|||F|||), \dots (8)$$

On the other hand, from proposition (1) it is clear that for any $F \in F(\tau, X)$, (which is not μ -simple) there exists a sequence of μ -simple functions $(F_n)_{n \in \mathbb{N}}$ such that

Therefore.

$$|U(F)| = \int_{T} \frac{dm \ dF}{d\mu} = (\theta) - \lim_{n \to \infty} \int_{T} \frac{dm \ dF_n}{d\mu},$$

and

$$|U(F)| \leq ((\theta) - \lim_{n \to \infty} W(||F_n||)).$$

Since W is (θ) -continuous, therefore,

$$|U(F)| \leq W((\theta)-\lim |||F_n|||)$$

and

$$|U(F)| \le W(||F|||).$$

It follows that U is a bounded operator.

Since Hellinger Integral is positive and linear, thus U is a bounded, positive linear operator.

Proposition 3. If U is a bounded, positive linear operator (in sense of (6)) on F (τ, X) with values in Y then there exists a positive additive function m defined on τ with values in $(X, Y)^r$, satisfying inequality (4) and

$$U(F) = \int_{\tau} \frac{dm \ dF}{d\mu}$$
 for all $F \in F(\tau, X)$.

Proof. For every $A \varepsilon \tau$ and $x \varepsilon X$, we can define an operator F_A^x on τ with values in X, by $F_A^x(A_i) = \mu(A \cap A_i)$ (x) for all $A_i \varepsilon \tau$. Obviously, F_A^x is μ -simple.

Operator m(A) defined on X with values in Y by m(A) $(x) = U(F_A^x)$ is a positive linear operator and m (as mapping: $A \longrightarrow m(A)$, of τ into $(X,Y)^r$) is positive, set additive and satisfies the inequality (4).

Case I. Suppose $F \in F(\tau, X)$ is μ -simple (that is given by equality (1)), then

$$U(F(A)) = U\left(\sum_{i=1}^{n} \mu(A \cap A_i) \ x_i\right)$$
$$= U\left(\sum_{i=1}^{n} F_{A_i}^{x_i} (A)\right)$$
$$= \sum_{i=1}^{n} U(F_{A_i}^{x_i} (A)).$$

Thus

$$U(F) = \sum_{i=1}^{n} U(F_{A_{i}}^{x_{i}}) = \sum_{i=1}^{n} m(A_{i}) (x_{i}) = \int_{T} \frac{dm \ dF}{d\mu}$$

Case II. Suppose $F \in F(\tau, X)$ is not μ -simple. Then there exists a sequence $(F_n)_{n \in \mathbb{N}}$ of μ -simple functions such that

$$(\theta)-\lim |||F_n-F|||=0$$

and

$$|U(F_n)-U(F)| = |U(F_n-F)| \le W(|||F_n-F|||) \xrightarrow{\theta} 0.$$

Hence

$$U(F) = (\theta) - \lim_{n \to \infty} U(F_n)$$

From (10) and proposition (1), we arrive at

$$U(F) = \int_{T} \frac{dm \ dF}{d\mu}$$

Proposition (1), (2) and (3) imply the following theorem.

Theorem 4. If X is σ -regular complete vector lattice and Y σ -regular (LF)-complete vector lattice then general form of a bounded positive linear operator (in sense of (6)) defined on $F(\tau, X)$ with values in Y is given by

$$U(F) = \int_{T} \frac{dm \ dF}{d\mu}$$

where m is a positive, additive function defined on τ with values in $(X,Y)^r$ satisfying inequality (4).

References

- 1. Cristescu, R. Integrales de Hellinger dans les espaces lineaires ordonnes. Rev. Roum. math. pures et appl., 16(1971), 483~486.
- 2. Kawai, I. Locally Convex Lattices. Jour. Math. Soc. Japan, 9(1957), 281~314.
- 3. Riesz, F. and Nagy, B.S. Functional Analysis. Frederick Ungar Publishing Co., New York (1965).

Department of Mathematics Quaid-i-Azam University Islamabad, PAKISTAN