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THE CLASS OF LIMIT LAWS FOR LEVY PROCESSES

WI CHONG AHN, IN SUK WEE

1. Introduction

Let X t be RLvalued stochastic process with stationary independent
increments whose log characteristic function is given by

(1.1) log E exp(iuXt ) =t[ibu-2-1q 2U2

+J(exp(iux) -I-iux(I+X2)-1)dv(x) ]

where v is a Borel measure on R- {Ol satisfying fX2 (I +X2)-ldv(x) <
00. As usual, we assume that X t is normalized so that Xo=O and
almost all sample paths are right continuous and possess left limits at
eveqr t. Our main concern is related to the following classical problem;
the convergence in distribution of (Xt- B t) / At as t---70 and t-too, where
lim At=O and limAt= 00.
1-0 1-+00

The analogous problem was completely solved for the case of sum of
i. i. d. random variables X n with common distribution function F. It is
well-known that the class of limit distributions of normed sum, (Sn­
Bn) / An' coincides with the stable distributions and necessary and
sufficient conditions for F to be in the domain of attraction of each
stable distribution are expressed in terms of F. As pointed out in [8J
by Pruitt, there is duality between the distribution function for the sum
of i. i. d. random variables and Levy measure for the Levy process.
Furthermore, the analogous condition to the case of i. i. d. random
variables with Levy measure replacing distribution function was obtained
in [IOJ by Wee for the convergence to the normal distribution as
follows; it is necessary and sufficient for {At} and {Btl to exist such
that (Xt-Bt) /At~!(('(O.I) as t---70 and t---7oo that

x 2v {y : Iy I>x} ---70

q2+f y2dv(y)
Jyl,;;x

Received May 20, 1985

-199 -



200 Wi Chong Ahn and In Suk Wee

as x-tO and x-too respectively: In fact, our present work is motivated
by this paper and suggestion by Professor Puritt. Surprisingly it turns
out that similar results to the case of normed sum of i. i. d. random
variables again hold with Levy measure in place of distribution function.
Note that it is obvious that the limit distribution is necessaily stable for
t-too but not for t-tO. Before stating our main result, define for a>O,

G~(a) =J dv(x)
Ixl>a

K~(a)=a-2(o2+f x2dv(x))
J1xl,;;a

G,+(a) =J dv(x)
x>a

G"-- (a) = L<_/v(x)

On first result is

THEOREM 1. (a) (1) The class of limit distributions of {(Xt - B t ) /

At} as t-tO for suitable numbers {At}, {Bt} coincides with the family
of stable distributions.

(2) For some {At}, {Bt}, the limit of (Xt- B t) IAt as t-tO has stable
distribution with index a, 0<a<2 iff G is regularly varying at 0 with
order -a and G,+(x) /G~(X)-tCl/ (C1+CZ) , G"--(x) /G~(x)-tCZ/(Cl +Cz)
as x-tO for some constants Ch Cz~O.

(b) The similar conclusions hold if t-tO and x-tO are replaced by
t-too and x-too respectively.

Another related topic is stochastic compactness of family {(Xt - B t ) /

At} in appropriate sense. This means that every sequence {(Xtn - B tn) /
Atn} with tn-tO or tn-too has further subsequence which converges to
nondegenerate distribution. In the case of normed sum of i. i. d. random
variables, Feller [2J observed that

lim x Z(l-F(x)+F(-x») <00
~"" fyZ dF(y)

Iyl';;x

is equivalent to the stochastic compactness of {(Sn - Bn) IAn} for some
sequence {An} and {Bn}. Recently very interesting equivalent conditions
to stochastic compactness were obtained by Jain & Orey in [6J and
Griffin, Jain, and Pruitt in [4J. For more related work to stochastic
compactness of normed sum of i. i. d. random variables, see Hall [5J.
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Now back to Levy process, we shall see that the analogue of Feller's
condition near zero and infinity is equivalent to stochastic compactness
of {(Xt - Bt ) / At} in appropriate sense. Define for a>O,

g(a) =Gv(a) +Kv(a).

The function g is continuous and strictly decreasing once g reaches its

support and g(a)~O as a~oo. We assume that Jdv(x) = 00 since then

g(a)~oo as a~O. If Jdv(x)<oo, then one can easily see that X t is

sum of a compound Poisson process and At for some constant A, which
is less interesting. Under our present assumption we may define at by

g(at ) =l/t.

We shall see that for this {at}, there exists{bt} such that {(Xt-bt)/at}
is stochastically compact in some sense. Our result concerning stochastic
compactness is

THEOREM 2. (a) The following three statements are equivalent;
(1) There exist {At}, {B t } such. that every sequence {(Xtn - Btn) / A tn}

for tn~O has further subsequence which converges to nondegenerate
distribution.

(2)

for some ~>O.

lim lim tGv(Tat) =0.
T_oo 1-0

lim tKV (~at) >0.
--,:::;0

1. GV(x)
1m K ( ) <00.x-o v x

(3)

(b) Similarly for t~oo and x~oo.

Another interesting question related to stochastic compactness IS to
describe the class of distributions which can be obtained as the limits
of subsequences under the assumption of stochastic compactness. For
stochastic compact family of sum of i. i. d. random variables, the class
of limit distributions obtained as the limit of subsequences was com­
pletely characterized by Pruitt in [7J.

2. Limit laws of Levy processes.

Recall the expression of the log characteristic function of X t in (1. 1)
and denote it by (b, (j'2, v). Besides Gv, Kv, G"t- and G"- defined in
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Section 1, we introduce following definitions; for a>O

f3v (a) =J x 3
/ (1+x2) dv (x)

Izl";a

av(a)=J x/(I+x2) dv(x).
Izl>a

First we need to prove the central convergence criterion III terms of
U~vy measure. Observe that if (Xt-Bt)/At converges to Y in distri­
bution as t-O or t_oo, then Y has necessarily infinitely divisible
distribution. So we denote Levy representation of its characteristic
function by (b, jj2, v) and corresponding functions by Gjj, Kjj and etc.

LEMMA 1. (a) In order that for some constants {Bt}, (Xt - Be) / At
converges to Y in distribution as t-O, it is necessary and sufficient
that following conditions be satisfied;

(1) lim lim e2tK(eAt) =lim lim e2tK(eAt) =jj2.
s-o t-+O e-o ~

(2) At every continuity point y of G~ and Gjj~,

lim tG~ (y At) =G~(y)
t-oO

lim tG'_ (y At) =G':. (y).
t-oO

The constants Bt are determined by

Bt=t (f3v (c;At) -av(c; At) +b) +MAt

where M is an appropriate constant and ~ is continuity point of v.
(b) The similar statements hold if "t-O" is replaced by"t-oo".

Proof. (a) First we show that (1) and (2) . are sufficient. Consider
following log characteristic function of (Xt - Be) / At;

(2.1) log E exp [iu(Xt-Bt)/At]
(J2u2t J . .= ---2-+t [exp(zux/ At) -1-zuxAt-l] dv(x)
2At Izl;;eAt

+tJ [exp{iux/At) -1]dv(x) -iuM.
Izl>eAt

We define measures Vt and Tt such that for Borel EcR- {O},

(2.2) vt(E) =tlJ(AtE)

Tt(E) =JEx2 / (1+x2)dlJt (x)

and
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rt ( {OJ ) =t(J2/ At2

where AtE= {Alx : xEE}. Then (2.1) can be written as

(2.3) J [exp (iux) -l-iux] 1+2
x2

drt (x)
Ixl';;~ x

+J [exp(iux)-l] 1+2x
2
drt(x)-iuM

Ixl>e X

where [exp(iux)-l-iux](l+x2)/x2 is defined to be -u2/2 at x=O.
Similarly for D, define for Borel EcR- {O},

feE) =t X2 / (1+x2)dv(x)

and

f( {O}) =jj2.

Then log characteristic function of Y is expressed as

(2.4) ibu+J[exP(iux) -l-iux(l+x2)-1] 1~2X2 df(x)

where

[exp(iux) -l-iux(1 +X2)-1] (1+x2) / x2

is defined to be -u2/2 at x=O. (1) and (2) can be rewritten as
follows;

(1)' lim lim (f x2dvt (x) +t(J2/A/)
,-0 '-0 Ixl';;e

=lim lim(J' x2dvt (x) +t(J2 / At2)
'-0 ,-0 Ixl,;;e

=jj2.

(2)' limJ dVt(x) =J dD(x)
.-0 x>y x>y

limJ dvt(x) =J dv(x) .
.-0 x<-y %<-y

At conitinuity point, - y<O, of v (hence of f), as t-O,

rt ( - 00, - y) =J x2/ (1+x 2)dVt (x)
x<-y

-L<_"x2/ (1+x2)dv(x)

=7C- 00 , -y).

Similarly, at continuity point, y>O of v, as t-O, rt(y, oo)-f(y, 00).
Furthermore by (1)', we obtain
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lim limJ (1+x2
) dr, (x) =lim limJ (1+x2)dr,(x) =ir,

.-.0 ,-0 1",1 s:. .....0 ,-6 1",1 s:.

which implies that

lim lim r,[ -e,e]=lim lim r,[ -e,e]=i12

E-O '-0 6-0 ,-6

SInce

J dr,(~) sJ (1+x2)dr,(x) s(1+e2)J dr,(x).
1",1s:. 1",1,;;. 1",1,;;.

Thus at every conitinuity point y of T, we have as t~O,

r,( - 00, Y)~T( - 00, y)

and
r,(-oo, oo)~f'(-oo, 00).

'W

This means that r,=?T as t~O. Thus we have proved that (2. 1)
converges to

J (exp(iux) -I-iux)dv(x) +
1",I,;;e

J (exp(iux) -I)dv(x) -iuM.
1",I>e

It is clear that M is necessarily-(.8u (~) -aU (~) +b) in order to obtain Y
as the limit of (X, - B,) / A, as t~O. The proof of converse is almost
identical to Theorem 3.2 in [10] except replacing -u2/2 by
Re log E exp (iu Y) and using

lim Re log E exp(iu Y) =0.
..-0

(b) The proof is very similar to (a).
For complete characterizations of the class of limit distributions, we

need two technical lemmas.

LEMMA 2 (Lemma 1 of [2]). (a) Let U be positive and monotone
on (0, 00) and suppose that there exist sequences of nU1"bers an~O, .(n>O
such that

.(n+1/'<"~1, and
AnU(anx)-)¢(x)

exists on a dense set and O<¢ (x) <00 on some interval. Then
cjJ(x) =CxP and U varies regularly at 0 where -oo<p<oo.

(b) The same conclusion holds if an~OO where U varies regularly at
00.
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Proof. Only (b) is in [2J, but (a) can be obtained from (b) if we
consider U(l/x).

LEMMA 3. Let 0"=0 and 0<a<2.
(a) If G is regulary varying at 0 with order -a, then

lim G'(x) 2-a
x-o Kv(x) a·

(b) If G is regularly varying at 00 with order -a, then

lim G'(x) 2-a
x_ooKlJ(x) a

Proof. (a) Denote Gv and Kv by G and K. Integrating by parts, we
have

J y2dv(y) = -x2G(x) +Z2G(Z) +2JoXyG(y)dy.
• <I:vl,;;.. %

Since for x sufficiently small, G(x) =x-al(x) where 1 is slowly varying
at zero,

J y2dv(y) = -x2G(x) +2JoX yG(y)dy.
1:vI,;;oX 0

Now using the fact that G(I/x) is regularly varying at 00 with order
a and Therorem 1 in [lJ, VIII. 9, we obtain for x sufficiently small,

JoX yG(y) dY"-'-21 x 2G(x).
o -a

(b) Integrating by parts,

x2K(x) -K(l) = -x2G(x) +G(l) +2S: yG(y)dy.

It is obvious that Jx 2dv(x) = 00 by the regular variation of G at

00 Again using Theorem 1 in [lJ, VIII. 9,

JoX yG(y) dy"" -21 x2G(x).
1 -a

Now we are ready to prove our main theorem.

THEROREM 1. (a) (1) The class of limit distributions of {(Xt - Bt ) /

At} as t~O for suitable numbers {At}, {Btl coincides with the family
of stable distributions.

(2) For some {At}, {Bt}, the limit of (Xt - Bt) / At as t~O has stable
distribution with index a, 0<a<2 iff Gv is regularly varying at zero
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with order -a and G"-t(x)/G'(x)~Cd(CI+C2)'

G"-- (x) /Gv(X)~C2/(CI +C2) as x~O, for some CI C2;):0.
(b) The same conclusions hold if t~O and x~O are replaced by t~oo

and x~oo respectively.

Proof. (a) By the central convergence criterion it is obvious that there
exist a U~vy process {Xtl, and numbers {Atl, {Bt} such that (Xt- Bt)
/ At converges to a stable distribution. It remains to show that the limit has
stable distribution if there exist such {Atl and {Btl. As we did before,
denote the Levy represntation of characterstic function of Y by (b, ij, v).
Since tG"-t(Atx)~G"'(x) and similarly for G"_ and G" at continuity points
of v, by Lemma 2, either Gv (x) =0 for any x>O or G+"(x)=C1x- a and
G"--ex) =C2x-a for any x>O must hold where C1+C2>0, Cl~O, C2;):O.
The first possiblity leads to the normal or degenerate distribution. If the

second possibility occurs, then 0<a<2 holds since S x 2/ (1 +x 2) dJ,i (x)

<00. And by Lemma 2, G"-t and G'_ are regularly varying at 0 with
order -a. If we write G'(x) as x-alex) where I is slowly varying at
0, then by (2) in Lemma 1, at continuity point y of D,

limtl(yAt) (C1+C2)/ya
t-O eyAt)a

which implies that

(2.5)

(2.6)

and by (2)

(2.7)

By Lemma 3, for t sufficiently small

e2tKv(eAt)"'-J Ata~ +e2t-
2

a G"(eAt)
t -a

in Lemma 1,

lim lim e2tGv(eAt) =lim lim e2tG" (eAt) =0.
8_0 t ....O e-f) t-O

Thus (1) in Lemma 1, (2. 5) and (2. 7) imply that as t---70,

a2t / At2~ij2,

but (2.5) forcesa2=ij2=0. Since G"'(x)=Clx-a and G"--ex)=C2x-a;
it is clear that G"-tex) /G'(x)~Cd (C1+C2), G"--ex) /G"eX)~C2/ (CI

+C2) as x~o. The converse is obvious from the context of proof
given above. (b) The proof is again similar to (a) but here t/Al~O

as t~oo, hence (12=0 is not necessarily true even though ij2=0 is still
true for 0<a<2.
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3. Stochastic Compactness

Recall the definition of g and at under the assumption Jdv(x) = 00

from Section 1. Since there are no other Levy measure than v arising
in this section, we write G and K for G~ and K~ respectively and do
similarly for other functions. We start with some observations about g.

LEMMA 4. (Lemma 2.4 in [9J) If G(x) ~CK(x) on intrval I for
S01lle constant C, then xOg(x) is decreasing on I where 0=2/ (C+1) <2.

Proof. It suffices to prove the statement when (72=0 and then the
proof is identical to Lemma 2.4 in [9].

Lemma 4 and the fact that x 2g(x) i give control over the growth of
g(x). If G(x) ~CK(x) on interval I, then on I for 0<1)<1,

(3.1) 1)-Jg (x) ~g(1)x) ~ 1)-2g (x)

and for M>l

(3.2) M-2g (X) ~g(Mx) ~M-Og(x).

Now we obtain three equivalen t statements concerning stochastic
compactness in appropriate sense.

THEOREM 2. (a) Following three statements are equivalent;
(1) There exist {At}, {Bt} such that for any tn-)O, {(Xtn - BtJ / Atnl
has further subsequence which converges to a nondegenerate distribution.

(3) for t-)oo and x-)oo

(i) lim lim tG(Tat) =0.
T_oo t-O

(i i) lim tK (~at)>0
~

for some ~>O.

(3)

(2)

-1· G(x) <
1m K() 00.x-o x

(b) The statements similar to (1), (2) and
and equivalent.

Proof. (a) (1) implies (2): It is well-known that {(Xtn - Btn) / AtJ
for tn-)O has further subsequence which converges to a distribution (not
necessarily nondegenerate) iff

(3.3) lim lim P(IXt-Btl>TAt) =0.
T-+oo t-+O

Consider a symmetric process X/=Xt-Xt where

~{Xt>t):O} and ~{Xt,t):O} are
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independent and {Xt}
(3. 3) holds, then

(3.4)

Wi Chong Ahn and In Suk Wee

has same distribution as {Xt }. It is clear that if

lim hm P(IX/I>TAt)=O.
T_oo t-O

Then by Levy's Inequality, we have

P(/X/ I>TAt) ~2-1p (suPIX,/I>TAt).",
~2-1[l-exp( -tGs(2TAt)]
=2-1[1-exp( -2tG(2TAt)]

sInce

P(sup IXu" ::;; TAt) ::;;P(there exist no jumps of magnitude.",
greater than 2TAt up to time t)

where Gs denote the corresponding G function for {X/}. By (3.4), it
is clear that

(3.5) lim hm tG(TAt) =0.
T_oo t-O

Also one may easily see that for some ';>0,

(3· 6) ~ tK(';At»O.,......
since otherwise there exists a sequence converging to a degenerate
distribution under (i) of (2). We observe that there exists C such that
for O<C<C'

(3.7) TIm tg(C'At)::;;limtg(CAt)<oo
t--+O t-O

by the central convergence criterion, Lemma 1. (3. 6) and (3. 7) imply
that there exist O<m<M< 00 such that for t sufficiently small,

m/t::;;g('; At) SM/t

hence
atlm2.';At 2.at l M·

By the comparability of At and at, and (3. 5) and (3. 6), (2) clearly
holds.

(2) implies (3): Suppose that lim KG«x» = 00 i. e.
%-0 x

We consider two possibilities;

-li· K(x) -0 -li K(x) >0
%~ G(Xf- or %~ G(x) .

But the first possibility is easily ruled out, since then

lim K(x) =0.
%-0 G(x)
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lim tK(~atL=O
t-O tG(~at)

which is contradiction to (2). Assume that

-10 - K(x);r:J G(x) >0.

Choose Xi lOs:) that for Ci 10,

K(Xi) (
G(Xi)::;'Ci, and g Xi)-H:O.

Let yi=sup {y<xi;K(y)/G(y»Ci} and g(Xi)=1/ti' g(y;)=1/s;. Then
x;=atj Yi=aSj and there exist u;->O such that aSj::;'~aUi::;'ati' By definition
ofy;, K(~(!u)/G(~ au)::;'ci which is again contradiction to (2).

(3) implies (1): Recall that there exists 0<0<2 such that XO1g (x)
for x small enough under the assumption (3). Let AO>4, T>A and bt=t

[b+,B(Aat) -a(Aat)]. Write Xtas a sum of independent processes, X/,
X t2 and t(b-a(Tat))where

[
(j2U2 flog E exp (iuXtl) =t --2-+ (exp(iux)

Ixl<;Tat

-l-iux(l+X2)-I)dv(x) ]

10gEexp (iu Xl)=t[f (exp (iux)-l)dv(x)).
Ixl>Tat

Then by differentiating the characteristic function, it is obvious that
EXtl=tj3(Tat) and VarXtl=tT2at2K(Tat). Note that for t small
enough,

(3.8) t Ij3( Tat) - j3(Aat) I ::;;tf.a, <Ixi <;Ta, Ix 3/ (1+x2) Idv (x)

<tT3at3G (Aat)
<J..-OT3at3

<Tat /4,
and

(3.9) tla(Tat)-a(A at) l::;,tla,<lxIGa,lx/C1+x2) Idv(:r)

<tTaeG (Aat )

<A-OTat

<Tat/4.

Using (3.8) and (3.9), and Chebychev's Inequality,
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P(IXt-btl ~ Tat) ~P(IX/+t[a (Aat) -a(Tat) -~(A.at)JI~ Tat)
+1-exp(-tG(Tat»
::;;P(IXtl-t~(Tat)I~ Tae/2) +tG(Tat)
::;;4tK(Tat) +tG(Tat)
<4T-o,

for t sufficiently small. It remains to show that every subsequential
limit of (Xt- bt) / at has nondegenerate distribution. But this is easy to
see by the central convergence criterion since for t small enough and
some constant C>O, e>1,

tK(eat) ~Ctg(eat) ~C~-2>O.

(b) It is similar to (a).
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