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AN EXTREMAL PROBLEM FOR HOLOMORPHIC
FUNCTIONS AND ITS APPLICATION

SUK-YOUNG LEE

1. Introduction

M. S. RobJrtson [10J established the following solution of an extremal
problem. Let qJ denote the class of regular function p (z), p (0) = 1 and
Re p(z»O, in /zl<l, where

p(z) =1+P1z+Pzzz+···+Pnzn+ ..•

Let F(w}, wz) be a given function analytic in the half-plane Re Wl>O
and in the wz-plane. Then for given every r, O<r<l, the value of

min min Re F(p(z), zp'(z»
pE!J> 1.1 ~r

occurs only for an extremal function of the form

p(z) = ±An( 1+SnZ
)

,,~l l-cnz

where

Robertson's method used variational formulas depends upon the works
of Hummel [4J, and Schiffer [14J. The same method yields the
solution of a related problem in which the term zp' (z) is replaced by

f.t(z) =~ F" p(t)dt (p(z) E'J». (1.1)
z Jo

It should be noticed that f.t(z) E'J>, since

Ref.t(z) = S~ Re p(pz)dp>O (z=re iO, r<l).

Specifically, we consider the following problem: Let F(w) denote an
arbitrary function regular in the portion Do of the half-plane Re w>O
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that is covered by the images of Iz I<1 by the mappings w = f.l (z) for
PEqJ. As we proceed, Do will be explicitly determined. We set

lIlF(r)=min min Re F(fl,(z)) (1. 2)
P=5J '_I=r

and consider the problem of finding its values by determining the extremal
function p(z). Robertson solved this problem first by the variational
method. The method used by him is quite long and somewhat difficult.
Its details suggested a much shorter, clearer proof by the method of
subordination.

It is the purpose of this paper to present this shorter derivation of
the solution of (1. 2) (see Theorem 1) and to make applications (see
Corollaries 1 and 2) to the class (}(.a of analytic functions

fez) =eiaz+a2z2+···+anzn+ ... (a real and fixed) (1. 3)

that are regular and satisfy the condition Re f' (z) >0 in Iz 1<1. It is
well known [8J that such functions fez) are univalent in Iz I<1.
MacGregor [6J discussed the class (}(.a in the special case a=O. In
particular, he pointed out that for lzl <1

1-lzl <Ref'(z)~lf'(z)l<l+l z l, (1.4)
l+lzl 1-lzl

-Iz1+2Iog(1+ Izl) ~ If(z) I~ -lzl-2Iog(1-lz I), (1. 5)

It is desirable to discuss the properties of a special univalent, starlike
function 8 (z) that will be useful in the proof of our theorems. The
starlike character of 8 (z) is fundamental to the proof of our Theorem
1 when we use the method of subordination.

LEMMA 1. Let K (z) denote the Koebe function z (1- z) -2, which is
univalent and starlike with respect to the origin for Izi <1. Then the
function

8(z)=2Jz K(t)dt=_2_+2Iog (l-z)=t ~zn,
z 0 1-z Z .=1 n+1

is also univalent and starlike with respect to the origin for Iz I<l.
Proof. Since

8(z)=_2_+~log(1-z)=f: ~zn,
1-z Z 0=1 n+1

8(z) may be written in the useful alternate form

8(z) = l+z --.lIZ 1+t dt=Po(z) -/1o(Z) , (1. 6)
1-z Z 0 1-t



where both
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I+z IS:;Po(z) =-1- and J1.o(z) =- Po(t) dt
-z z 0

are members of the class qJ. A computation of

8 (e iO) = U(O) +iV(O)

for 0<0~77: gives

U(O) =1+ (cos 0) log{2 (I-cosO)} -(77:-0) sinO, (1. 7)
V (0) = (sin 0) (I-cos 0) -1_ (77:-0) cos O-sin 0 log {2(I -cos O)}

= d~~) . (1. 8)

For 0<0<77:, we obtain from (1. 6) the inequalities

-_ [Ii:; I+t ] --II I-p2U(O) - Re - -I- dt . - 1 2 0+ 2 dp<O, (1. 9)z 0 - t :;=.,0 0 - p cos p

V(O)=dU(O) fl 2p(I- p2)sinO dp>O. (1.10)
dO 0 (I-2p cos 0+ p2)2

The function w=8(z) maps Izi =1 onto an unbounded curve C,
symmetric about the real axis. From (1. 9) it follows that C lies in the
left half-plane Re w<O. From (1.10) it follows that the imaginary
part of 8(eiO) is positive for 0<0<77: and that its real part is a strictly
increasing function of o. Thus 8(z) is both typically-real and univalent

in Izi <1.
Moreover, 8 (z) is starlike with respect to the origin in Iz I<1. In

other words,

Re z~~~» >0 ( IzI<1).

Since 8(z) =1.-r:; K(t)dt, it follows that
z Jo

z8' (z) +8(z) c=2K(z) =2z(I -Z)-2,

we have the relations

(1. 11)

z8'(z) +1= 2z
8(z) (I-z)28(z) ,

But (1. 11) is equivalent to

z8'(z)
8(z)

1
2z-2(I-z)28(z)

(I-z)28(z)

Iz~~~» -11 < IZ~~~» +1\
In other words, (1. 11) is equivalent to

(izi <1).
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I 2 I I= 4z
n

+
1 I3z-2--;-(1-z)2}og (l-z) = fl n(n+l)(n+2) <lzI2<lzl.

(1. 12)

The inequality in (1. 12) follows from the identity

4.f; 1 1
n=l n(n+1) (n+2) .

It is also obvious that (1. 11) is satisfied for z=o. This completes the
proof that 8 (z) is univalent and starlike with respect to the origin for
Izl<1.

2. An extremal problem and Its application

We obtain the following theorems and corollaries.

THEOREM 1. Let gJ be the class of regular functions P(z) in Iz I<1
with P(O) =1 and ReP(z»O. Let F(w) denote a nonconstant function
that is analytic in the convex domain Do which is the image of Iz I<1
by the mapping·

w=flo(z) =l.J
z

1+t dt= -2 log (1-z)-1.
zJo I-t z

This domain Do lies the half-strip given by the inequalities 11m wi <rc,
Rew>2log 2-1. Then, for each r<l, the minimum

mF(r) = min min Re F(l-J'" pet) dt)
pep Izl=r Z 0

occurs for a function of the form P (z) = (1 +ez) (l-ez) -1, where e is
an arbitrary complex constant of absolute value 1, and for no other
functions.

Proof. Let !to(z) be defined as in (1. 6). Then

!to(z) =-.lJz 1+t dt= fIl +zp d'p= -2 log (l-z)-1.
z ol-t Jol-zp z

R. M. Robinson [l1J has pointed out that !to(z) is convex in Izi <1.
However, this is also an immediate consequence of Lemma 1. Since
8 (z) is starlike in IZ I<1 and since

z!to'(z) =8(z) =_2_+2Iog(l-z),
l-z z

it follows that w=!to (z) maps Iz I<1 onto a convex domain Do. This
domain is symmetric about the real axis. We shall show that Do lies in
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the half-plane Re w>2 log 2-1>0 between the two straight lines
Imw=+1r, a fact that is not immediately obvious. We let

J.to(e iU) = Uo(O) +iVo(O).

Then, for 0<0;;;; 1r,

U0(0) = - (cos 0) log {2(1-cos O)} -1+ (1r-O) sin 0,
Vo(O)=(sinO) log {2(l-cosO)} + (1r-O) cosO,

fo Vo(O)=- Uo(O). (2.1)

From (1. 7) and (1. 9) we see that U 0(0) = - U(O) >0. From (2.1)
it follows that Vo'(O) <0 for 0<0;;;;1r. Since Vo(O)=1r and Vo' (0) <0 for
0<0;;;;1r, it now follows that

11m J.to(z)I<1r (lzl<l).
Since U o(7I:) =2 log2-1 and Uo(O) = +00, and because J.to(z) 1S
univalent, convex and real on the real axis,

Re J.to(z»2log2-1 (lzl<l).

Since P (z) E fj) has a Herglotz representation

P(z)=J:~~~:;:: da(t/J) (J:~da(~)=l),

where a(t/J) is a nondecreasing function of tP in [0, 271:J, we can write

J.t(z) =JlJz P(Z)dt=J2~(lJz ~ +te~: dt)da (tjJ)
zoo z 0 -te'

=J2~(J1 ~+pze~: dP)da (tP) =J2~ rio (zei<P) da (tP).
o 0 -pze' 0

We see that if Iz I=r, then J.t(z) is an average (with a pos1tive
weight factor) values J.to (zeiif» , and hence it lies in the convex hull of
the values of J.to(z) for Izi =r. But since J.to(z) is univalent and convex,
it follows (as R. M. Robinson observed [l1J) that f1.(z) is subordinate
to J.to(z) for Izl<1. Because J.t(0) =J.to(O) =1, there exists a bounded
function w(z), regular in Iz I<1, such that

w(O) =0, Iw(z) I~ Izl<l, J.t(z)=f1.o{w(z)}.

Hence, if F(w) is an analytic function, regular in the convex domain
Do that is the image of Iz I<1 by the mapping w=J.to (z), then

.F(J.t(z» =F(J.to{w(z)}).

This states that F CJ.t (z» for Iz I= r always lies within the set of values
FCJ.to(z» for Izi ;;;;r, it follows that
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min min Re FCIt(z» = min Re FClto(z». (2.2)
befjJ 1%I=r 1%I=r

Thus Po(z) = (I+z) (l-z)-1 is an extremal function for the left member
of (1. 2). If e=eia , where a is real, then clearly Po(ez) is also an
extremal function, since the right-hand side of (2.2) is unchanged when
z is replaced by ez. The only extremal functions are of the form
Po (ez) , since by Schwarz's Lemma Iw(z) I<Izi unless w(z)=ei¢)z. For
if P1(z) is another extremal function, not of the form Po(ez), then

min Re F(lJz P1(t)dt) =min Re F(f.lo(z».
1%I=r Z 0 1%I=r

Then there exists an W1(Z) (lw1(z) I~ Izi <1), regular in Izi <1, such
that

min Re F(f.lO{W1(z)})=min Re F(f.lo(z»,
1%I=r 1%I=r

which for nonconstant F(z) is impossible by the minimum theorem,
unless IW1(z)I=lzl. If Cth(z)=ez, where lel=l, then

lSz P1(t)dt=f,toW1(z»=..LS
ez

l+t dt=lJz l+ep dp.
z 0 ez 0 I-t z ol-ep

Thus, for all z and Z1 in Iz I<1, we see that

J:(P1(p)- ~+::)dP=O, J:l(P1(p)- i+::)dP=O.

For Z~Zh this gives the relation

_I_Jz (P1(p) l+ep )dP=O.
Z-Z1 ZI l-ep

Letting Z1 ----.)- z, we conclude that

P 1(z) = 1+ez =Po(ez).
l-ez

This completes the proof of Theorem 1.

THEOREM 2. Let q; be the class described in Theorem 1. Let Z1 be a
complex number (0< Izd <1). Let F(w) denote a nonconstant function
that is analytic i1l the convex domain Do defined as in Theorem 1.
Then

min Re F(lJ
z

l P(z)dz) =Re F(lf
Z

l 1
1

+ez dz)
pe<p Z1 0 Z1 0 -ez

where e depends on %1 and F, and lei =1.

Proof. For 1%11 =r, O<r<l, we obtain, from Theorem 1,



An extremal problem for holomorphic functions and its application 187

min min Re F(,u(z» ~Re F(,u(ZI». (2.3)
pefjJ Izl=r

If the left-hand side of (2.3) is attained at the point Zo (izol =r) when

P(z) =Po(z) = (1+z) (1-Z)-I,

and if ZO%I-I=c, then e depends on F and ZI. Furthermore, equality
occurs in (2.3) if on the right-hand side of (2.3) in the definition of

,u(ZI) = s: P(pzl)dp,

P(z) is replaced by Po(ez)=PO(ZoZl-lz ). In this case, the right-hand
side becomes Re F(.uo(zo». However, the left-hand side is also
Re F(,uo(zo». Hence it follows from (2.3) that

min Re F(,u(ZI» is attained for P(z) =Po(cz).
pefj)

This completes the proof of Theorem 2.
Applications to the class (J(a of analytic function

fez) =eiaz+ll<Jz2+ ···+a"z"+ ...

that are regular and satisfy the condition Re f'(z»O in Izi <1 will be
given by the following two corollaries;

COROLLARY 1. Let (J(a be the class of regular functions fez) defined
in Izl<l as in (1.3), so that Ref'(z»O in Izl<1. Let G(w) denote
a nonconstant analytic function in the convex Da that is the image of
Iz I<1 by the mapping

w=-e-ia_~ (cos a) 10gH-z).
z

Then, for each fixed r<l, the l1tinil1tum

min min Re G(f(z) )
jelJ!.a Izl=r Z

occurs for a function of the form

fez) = -e-;az-~(cos a) log (l-ez)
c '

where e is an arbitrary complex constant of absolute value 1, and for no
other functions.

Proof. Since Re f'(z»O, we may write

f'(z)=(oosa) P(z)+isina, (cosa>O, P(Z) EqJ),
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fez) =i sin a+ cos a J" P(t)dt=i sin a+ (cos a)f.l(z).
z z 0

P(z) = Po(ez) = l+ez (lzl=l),
1-ez

fez) fo(z)="':"-e-iaz-~(cosa)log(l-ez).
e

The function

w=w(z)=~ fo(sz) = -e-ia-1.(cos a) log(l-z)
z z

is convex in Izl<l, since zw'(z)=(cosa) S(z) is starlike in Izl<1.
Thus Corollary 1 follows immediately from Theorem 1.

COROLLARY 2. Let O<.a be the class of regular functions fez) defined
in lzl <1 as in (1. 3), so that Ref'(z»O in Izi <1. Let G(w)
denote a function that is analytic in the right half-plane Rew>O.
Then for each r<l

~~ ~=~ ReG(f'(z))=~!:ReG((cosa)i+: +isina).

Proof. This corollary is an easy consequence of Theorem 2 of
Robertson's paper [10J, which states that if F(w) is analytic in the
half-plane Re w>O, the~ for each r<l

min min ReF (P(z») = min ReF(ll+z). (2.4)
pE:J) 1%I=r 1%I=r-Z

So corollary .2 follows from (2.4) if we take

F(P(z)) =G((cos a) P(z) +i sin a) =G(f'(z»).
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