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PROJECTIVE REPRESENTATIONS OF
SOME FINITE GROUPS

SEUNG AHN PARK

1. Introduction

Let G be a finite group, and let K be an algebraically closed field of
characteristic zero with its multiplicative group K*=K - {O}. A mapping
T: G~ GLn(K) of G into the general linear group GLn(K) is called
a projective representation of G of degree n over K if

T(g) T(h) =a(g, h) T(gh) , a(g, h) EK*

holds for all g, hEG. The function a: GXG~ K*. is called the
factor set of T. We say that T is irreducible if the vector space
V=Kn has no nontrivial proper subspace invariant under all T(g), gEG.

Let T: G~ GLn(K) and S : G~ GLn(K) be projective repre­
sentations of G with factor sets a and f3, respectively. We say that T
and S are (projectively) equivalent if there exists a nonsingular matrix
PEGLn(K) and a function c : G~K* such that

S(g) =C(g)P-lT(g) P, gEG.

In this case, a and f3 are equi1JlZlent. That is, the following holds:

f3(g, h) =a(g, h)c(g)c(h)c(gh)-l, g, hEG.

If there exists a nonsingular ~atrix PEGLn(K) such that

S(g) =P-IT(g)P, gEG,

then T and S are said to be linearly equivalent. Linearly equivalent
projective representations have the same factor set.

The purpose of this paper is to explicitly determine all the irreducible
projective representations of some finite groups. The following is our
main Theorem.
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THEOREM Let G be a finite group with two generators x and y defined
by

where
( i) (r, n) =1, p is a prime,
(ii) (r-1, nd)=d with d=(r-1, n), and
(iii) rP==1 (mod nd).

Let K be an algebraically closed field of characteristic zero and ~ a
primitive n-th root of unity in K. Then d is equal to 1 or p.

If d=1, then we have H2(G,K*)={I}.

If d=p, then the following hold.
(1) H2(G, K*) is a cyclic group of order p.
(2) For any factor set ~ of Gover K which is not equivalent to the

trivial factor ~et,

KIl[G]=Ml Ef) ••• Ef) M", Ml = ···=M..!!..=Matp(K).
p p

(3) Let a: GXG~K* be a factor set of G such that

a (yixi, xl.) =a(yi, yi) =1,
a (yix i, y1xlt) =~(l+r+r2+···+rl-lH

for all integers i, j, k and I;;:::: 1. Then

H2(G,K*)=({a})={{l}, {a}, {a2}, ... , {aP-l}}.

For each factor set a l. with 1:5:k:5:p-1, there are exactly .!!-linearly
p

inequivalent irreducible projective representations of Gover K with
factor set a l.. They are projective representations Tki : G~GLp(K)

of degree p defined by
Tki(x)=diag {~k+i, ~l.<l+rHri, ~k<1+r+r2Hr2i, ..•, .;l.<1+r+···+rP-1HrP-Ji}

o 0 0 1

TH(y) = ~ ~ ~ TH(yiXl) = T ki (y)i T ki (x)l.

o 0 1 0

Here, for each k, projective representations T ki and T l.i are linearly
equivalent if and only if j==k(r+r2+ ···+rl) +rli (mod n)

for some I with O:5:I:5:p-l.
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The proof of Theorem will be given in section 3. In fact, all the
irreducible ordinary representations of the group Gover K are wellknown
and they can be found in [2, § 47J. On the other hand, if a and (3
are equivalent factor sets of Gover K satisfying

(3(g, h) =a(g, h)c(g)c(h)c(gh)-l, g, hEG,

for some function c : G~ K*, then
T~cT

is a one-to-one correspondence between the projective representations of
G with factor set a and those with factor set (3, which preserves
irreducibility and linear equivalence. Therefore, our Theorem gives all
the irreducible projective representations of Gover K.

The dihedral group

Dn=(x, y Ixn=l, y2=1, y-1xy=x-1)

of order 2n, n~3, satisfies the conditions in Theorem. Thus if n is
odd then H2(Dn, K*) = {l}, and if n is even then H2(Dn. K*) is a cyclic
group of order 2. And every irrducible projective representations of
D n over K are determined.

The notation and terminology in this paper are standard. For any
finite group G, denote the order, the center and the commutator
subgroup of G by IGI, Z(G), and [G, G], respectively. The full matrix
ring over K of degree n will be denoted by Matn(K).

The equivalence class containing a factor set a of G will be denoted
by {a}. The set H2(G,K*) of all equivalence classes of factor sets of
Gover K forms an abelian group under the multiplication defined by
{a} {(3} = {a(3}. This group is called the Schur multiplier of G, and it
is actually the second cohomology group where K* is a trivial G­
module.

Let Ka[GJ denote the twisted group algebra of Gover K with respect
to the factor set a. Then there is a one-to-one correspondence between
modules over Ka[G] and the projective representations of Gover K
with factor set a. And the isomorphism of modules corresponds to the
linear equivalence of projective representations. Note that if a is the
trivial factor set then Ka[G] is the ordinary group algebra K[G] and
a projective representation of G with factor set a is an ordinary represen­
tation of G.
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2. Necessary Lemmas

The following two lemmas will be used in the proof of Theorem.

(2. 1) Let n, r and p be integers such that
( i) (r, n) =1, n is positive, p is a prime,
(ii) (r-1, nd) =d with d= (r-l, n), and
(iii) rP==l (mod nd).

Then the following hold.
(1) If ri=i (mod nd), then i-O (mod n).

If r i==l (mod nd), izl, then 1+r+···+ri- 1-O (mod n).
(2) We have

rP=l (mod n) and 1+r+···+rP- 1==O (mod n).
(3) If i and j are positive integers such that i-j (mod p), then

1+r+···+ri-1=1+r+···+rj - 1 (mod n).

(4) The integer d is equal to either 1 or p. Moreover, d=l if and
only if prn, and d=p if and only if pin.

Proof. The assertions (1) and (2) follow from the facts that

(r~l, n)=l and ri-1=(r-1) (1+r+···+ri- 1).

And the assertion (3) follows from (2).
Since (r-1, n)=d, we have 1"=1 (mod d) and n==O (mod d).

By (2) this implies that

0-1+r+···+rP- 1 l+l+···+l=p (mod d).

Therefore, d is equal to either 1 or p.
If d = p, then pin. Conversely, assume that pin. Then rP-1

(mod p) by (2), and so r=rP==l (mod p). Hence p divides d, and
so we have d=p. Thus the assertion (4) holds.

(2.2) Let G be a group with two generators x and y defined by
G=(x, Ylx"=l, yP=l, y-1xy=xr),

where (r, n) =1, p is a prime, and rP-1 (mod n).
Set d= (r-1, n), and let K be an algebraically closed field of

characteristic zero. Then the following hold.
(1) G is a group of order np, and

n

[G, G]= (x r- 1) = (xd), Z(G) = (xd >.
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(2) We have

K[GJ ~KIEB ... EBKpdEBM1EB ... EBMm,

n-d ( )m=--, K1=···Kpd=K, M1=···=Mm=Mat p K .
P

Proof. The proof can be found in [2, p.338J.

3. Proof of Theorem
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In this section we will prove our Theorem by a series of propositions.
Note that G is a well defined group, and it is a semidirect product of

a normal subgroup <x) by a subgroup <y). Thus every element g of G
can be expressed uniquely in the form

g=yix i , O~i~n-l, O~j~p-l.

(3.1) The integer d is equal to either 1 or p. Moreover, d=1 if
and only if d{n, and d=p if and only if pin.

Proof. This follows from (2. 1).

(3.2) If d=l, then H2(G, K*) = {I}.
Proof. If d=l, then p{n. Hence every Sylow subgroups of G is
cyclic, which implies that H2(G, K*) = {l}.

(3.3) Assume that d=p. Then H2(G, K*) is a cyclic group of order
p, and

G1=<XhYllxl"P=I, yl=l, YI-1XIYl=X{)

is a representation group of G.

Proof. Since G is generated by two elements and three defining
relations, H 2 (G, K*) must be cyclic. On the other hand, G has a
normal subgroup <x) of index p. Hence IH2(G, K*) I ~p.

Since pin and (r, n) = 1, it follows that (r, np) = 1. And We have
rP==1 (mod np). Hence G1 is well defined. By (2.2), we have

[Gj, G1J = <Xlr - 1) = <XIP), Z(G1) = <Xl")·
Thus <Xl")=[Gh G1J nZ(G1) and Gd<Xl")~G. Hence it follows that
IH2(G, K*) I ~p. Therefore, H2(G, K*) is cyclic of order p, and G1
is a representation group of G.
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(3.4) Assume that d=p, and let jj: GXG --)0 K* be a factor set
of G which is not equivalent to the trivial factor set. Then

Ktl[G]~MIEB .•• EElM", where M1=···=M-'!..=Matp(K).
p p

And every irreducible projective representation of Gover K with
factor set jj is of degree p, and every projective representation of G
over K of degree p with factor set jj is irreducible.

Proof. Since G1 is a representation group of G, we have

K[G1] ~EEllal Ka[G],

where the sum runs over all elements {a} in H2(G, K*). On the other
hand, it follows from (2. 2) that

K[G1] ~KlEEl .•• EBKp2EElM1EEl .•• EElMn- 1

and

K[G] ~KlEEl .•• EElKp2EBM1EEl··· EElM"_1
p

where K 1=···=Kp2=K and M1=···=Mn-1=Matp(K). Since jj is not
equivalent to the trivial factor set, Ktl[G] not isomorphic to K[G].
Hence it follows that

Ktl[G]~MIEB .'. EBM".
-~-

Thus the assertions hold.

(3.5) Assume that d=p. Let jj : GXG --)0 K* be a factor set of
G such that

jj(yix i, x") =jj(yi, yi) =1
for all integers i,j and k, and set f3(x,y)=B.

Then B is an n-th root of unity in K, and
f3(yix i, y1x") =BC!+r+···+rl-1)i

for all integers i, j, k and I~ 1. Moreover, jj is equivalent to the trivial
factor set if and only if BE <~p>.

Proof. We use the identity

jj(g, hk)f3(h, k) =f3(g, h)jj(gh, k), g, h, kEG.

First we can show that

f3(yix i, y1x") =jj(yixi, yl),

and, by induction on I~ 1, we can show that

f3(yixi, yl) =BCl+r+···+rl-1)j.
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Since xn=I, we must have I=J3(xn, y) =Bn and so B is an n-th root
of unity in K. Furthermore, J3 is a well defined factor set of G, by
(2) and (3) of (2.1).

Now suppose that J3 is equivalent to the trivial factor set 1. Then
there exists a function c : G~ K* such that

J3(g, h) =c(g)c(h)c(gh)-l, g, hEG.

Since J3(xi, xi) =1 for all i and j, the mapping c I<x> : (x)~ K* IS a
group-homomorphism. Hence we have

c(xi) =c(x)i, c(x)n=c(I) =1.

From J3(y, xi) =1 it follows that c(yxi) =c(y)c(xY Hence

B=J3(x, y) =c(x)c(y)c(yxr) -I=C(X) I-r,

and so B is contained in <t;I-r) = <t;P).
Conversely, suppose that B is contained in (f;P) and let r be an

element of (f;) such that B=rI-r. Define a function c: G~ K* by
c(yix i) =ri for all integers i and j. Then it is easy to see that J3(g, h)
=c(g)c(h)c(gh)-I holds for all g, hEG. Thus J3 is equivalent to 1.

(3. 6) Theorem holds.

Proof. By (3.2), if d=I then H2(G, K*) = {I}.
Now assume that d=p. By (3.3) and (3.4), the assertions (1) and

(2) of Theorem hold. Let a : G XG~ K* be a factor set such that

a (yix i, x k) =a(yi, yi) =1
and

for all integers i, j, k and l?: 1. Then a (x, y) =t;, and so it follows from
(3. 5) that a k is equivalent to the trivial factor set if and only if pi k.
This implies that <{a}) is a subgroup of H2(G, K*) of order p. Hence
H2(G, K*) =( {a}).

Let k be an integer such that 1~ k~P - 1· Then the factor set a k is
not equivalent to the trivial factor set, and so (3.4) holds for J3=ak•

Hence there are exactly ~ linearly inequivalent irreducible projectivep
representations of Gover K with factor set a k•

Define a mapping T ki : G ~GLp(K) as in Theore1Jl. Then it is
easy to see that T ki is a projective representation of Gover K with
factor set a k• By (3. 4) every T ki is irreducible.
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Suppose that T ki and Tkj are linearly equivalent. Then TH(a:) and
Tkj(a:) must have the same eigenvalues, and so ~k+j must be equal to
~k<l+r+"'+rl)+rli for some integer 1 with O~1~p-1. This implies that

j=k(r+r2+...+r) +ri (mod n)

Conversely, assume that the above congruence holds. Then it is easy to
see that there exists a permutation matrix PEGLp(K) such that

Tkj(g) =P-lTki(i)P, gEG.

Hence T ki and Tkj are linearly equivalent.
This completes the proof of Theorem.
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