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THE CLOSED IDEALS OF AN INFINITE
SEMIFINITE FACTOR

Sa GE Leg, Sunc JE CHo AND Sung Ki Kim

1. Introduction.

Throughout the paper, H denotes an infinite dimensional complex
Hilbert sapce, B(H) the set of all (bounded, linear) operators on H.
Even if it has been a folklore in operator theory to characterize the
nonzero closed (two sided) ideals in B(H) ([6], [9], [13]) and the
ideal of relatively compact operators in a Il.—factor ({17, [2], [7], [8],
[14]), there has’nt appeared a unified theory for this characterizing
problem, to the best of my knowledge, governing both the cases of
I.—factors and Il.-factors.

The purpose of the paper is to show that there is such a unified way
for characterization of the nonzero closed ideals in an infinite semifinite
factor, based on our earlier work [11].

2. Ideals.

LEMMA 1. Any nonzero left ideal I, of a von Neumann algebra A
contains a nonzero projection.

Proof. Let &1, and let z=u|z| be the left polar decomposition of
z. Since the partial isometry €A, we see that |z|=wu*z€l,. We
may assume that {z|#0 without loss of generality. There is &0 such
that Efe, ) #0, where E( - ) is the spectral measure of |z|. We
abbreviate E[e, ) to e. Then range ({z]e) Crange (|z]). Since the
origin of the complex plane is an isolated point of the spectrum o(]z|
e), we see that range(|z|e) is closed. Let p be the nonzero range
projection of |zle. Thus p=|z|y for some y=A, by the strengthening
([11] Lemma 1.) of R.G. Douglas result ([4] p. 413 Theorem 1),
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since range(p) Crange(|z|). It follows that p=y*|z| 1.

LEMMA 2. If I, is an ideal in a factor A and contains an infinite
projection p (relative to A), them I, contains every finite projections
of A.

Proof. Let q be an arbirary finite projection of A. Since A is a
factor and p is infinite, we see that ¢<p. Hence g~p;<p. Since p;=
p1p<I:, we can easily show that g=1,.

LEMMA 3. Let Iy be an ideal in a factor A and contain a nonzero
finite projection p of A. Then I, contains every finite projection q of
A.

Proof. Let p be a nonzero finite projection of A such that pel,,
and let ¢ be any finite projection of A. If g<p, then a similar
argument as above Lemma 2, we see that g&I,. Now, let p<q. Let
{q;} ;er be a maximal family of mutually orthogonal subprojections of ¢
such that p~yg;, for every i€l'. Since 7, ¢;<q and ¢ is finite, we see

el
that the cardinality card(/") of I" must be finite. Consequently 3, ¢;€
tel’
I.. Now, p-Kq-—-_Z; g; by the maximality of {q;};,. Consequently,
q—-—_}:,; g;<p. Again, this implies that q—-ZE' g;€1,. Thus, q=ZP g+
(q - .é]r g;) €1,

THEOREM 1. If I, is a nonzero ideal in a factor A, then I contains
all the finite projections of A.

Proof. Combine the above lemmas 1,2 and 3.

DEFINITION 1. Let ¢ be a projection in an infinite semifinite von
Neumann algebra A. When e is a finite projection relative to 4, we say
that ¢ has the relative finite rank and denote this fact by the symbol
rank (¢) <¥®o. Now let e be an infinite projection of A and assume
further that there exists a family {e;};c; of mutually orthogonal nonzero
finite projections in A such that e=‘_§' ¢;. Then we define the relative
rank rank (¢) of e by rank (¢) =card(I"), where card(I') is the cardinality
of I' ([11] Definition 1).

By (p. 252 [3] Lemma 6), it is clear that rank(e) of an infinite
projection ¢ in A is well defined independent of the choice of the
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expressions e=iez; ¢; and that rank(e) <rank(f), whenever ¢< f,e, f are
infinite projections in A.

For z€ A, let I(2) denote the left support of z in A that is the range
projection of x in A. For every infinite cardinal @, we define I,= {z€
A :rank (((z))<a} and J,=I,, the norm closure of I, in A ([11]
Definition 3).

For an infinite cardinal « the relative a—topology T, on H is defined

as the locally convex topology on H, generated by the set of all
seminorms p, of the form

z€ H-supil (z,9) : yEMy},

where M varies over F, and F, is the set of all nonzero closed subspaces
of H each of whose range projections belongs to A with the relative
rank<la. Here M, denotes the unit ball of M ([11] Definition 4).

We put S as the set of all T,~neighborhoods s of 0 in H such that
s is a finite intersection of sets {yeH : pp(y)<e}, where M varies
over F, and ¢ varies over the set of all positive numbers. We regard
S as a directed set with respect to the order s<#, meaning £Cs.

The followingis obtained in ([11] Theorem 1).

THEOREM A. Let A be an infinite semifinite von Neumann algebra,
P the set of all projections of A, « an infinite cardinal. The next six
statements are pairwise equivalent.

(i) z<d,.

(i) If qeP, q(H)Cz(H), then rank (g)<a.

(iii) If p<P and z is bounded below on P(H), then rank(p)<a.

(iv) For every €0, there exists pE P such that ||zpll>¢c and rank

(I-p) <e.
(v) z|Hy, : Hy— H is norm continuous with respect to T, on H;
and the norm on H, where H; denotes the unit ball of H.

(vi) For every norm bounded net {&,:s<S} in H such that & —0

in T, we have x£~0 in norm.

It is the main purpose of our paper to show that these J,'s just
constitute the set of all nonzero closed ideals of A when A is an infinite
semifinite factor (See Theorem 5). From now on, we only consider
the case when A is an infinite semifinite factor.

LEMMA 4. Let ¢ be an arbitrarily given nonzero finite projection in
A. Then there exists an infinite family le;};cr of mutually orthogonal
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nonzero finite projections in A such that p-——‘Z ¢; and that e;~e for all
el
icI', where p is any given infinite projection in A.

Proof. By comparability of two projections in a factor and Zorn’s
lemma, one can find a maxmal family {p;};cr of nonzero mutually
orthogonal finite subprojections of p in A such that p;~e for all i /.
We write f=p-—'ZE]rp,-. Then f('é' #:)=0 and f< p;, for all i€I', by
the maximality of {p;};er. By the same proof of (II) in ([15] pp. 97-
98), we see that there exists a family {¢;},o; of nonzero finite mutually
orthogonal subprojections ¢; of p such that p=_Zr ¢; and that e;~e for
all iel. -

DEFINITION 2. (An analogue to Definition 6.2 in [13] p.604) Let A
be an infinite semifinite factor and let I, be a nonzero ideal of A. The
(relative) height h(I;) of I, is defined by

k(1) =sup {rank(p) : pE P},
when I, contains at least one infinite projection of A, and
h(Isk):NOs
when I, does not contain any infinite projection of A (See Theorem 1).
We call that 2(I,) is accessible if there is an infinite projection pcP
in A such that rank(p)=n~(l,). Otherwise, the height 2(Z,) is called
inaccessible.

If the height 2(J,) is inaccessible, then it is immediate to see that
h(I4) is a limit cardinal (p.604 [13]).

LEMMA 5. If p and q are projections in A such that rank(p)=rank
(@) =Wy, then p~q.

Proof. We fix a nonzero finite projection ¢ in A. By Lemma 4, there
exist two families {e;};er and {f;}:cr each of which consists of nonzero
finite mutually orthogonal projections such that e;~e~f; for all icrl
and that p=Z‘.r e, q='Zr fi. Consequently, p~g.

LEMMA 6. Let Iy be a nonzero ideal of A. Let p be an infinite
projection in A such that p&l,. Then for any projection q in A such
that rank(q) <rank(p), we have that ¢<I, (cf. p.604 [13] Lemma 6.1)

Proof By Lemma 2, we may assume that g is an infinite projection.
If g< p, then by a similar argument as the proof of Lemma 2, one
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sees, that g&/,. Let p<g, then rank(p) <rank(g). Hence rank(p)=
rank (¢) with the aid of the hypothesis of the present lemma. Lemma
5 then implies that p~q.

THEOREM 2. Let Iy be a two sided ideal of A and let f=h(I4) > No-
If the height h(Is) is accessible, then Iy=Jgs1 (cf. Theorem 6.2 [13]
p.604)

Proof. Let z€l,., We want to apply (ii)— (i) of Theorem A.
Assume that pEP be any projection in A satisfying p(H)cz(H).
Then rank(p) <h(I;)=p<B+1, noticing p&I, ([11] Lemma 1). By
(i) — (1) of Theorem A, we see that z&J;y;. Conversely, let z&
Jgs1- Then there is a sequence: {z,} Iz, such that |z,—z| — 0.

Thus, range(x)C\Z range(z,), the closed linear span of range (z,)’s.

On the other hand rank (I(z,)) <<g+1, that is, rank(i{z,)) <8, for

every n. It is easy to see that the relative rank of the projection whose
range is \/ range(z,) is< 8of=_4. Consequently, rank(I(z)) <g<p+1.
n=1

Since k(I,) is accessible, there is peP NI, such that A=rank(p).

Since rank(I(z)) <B=rank(p), we see that I(z) &I, by Lemma 6.
Hence z=I(z)z<1,.

THEOREM 3. Let I, be an ideal of A. Let f=h(l,) be an infinite
cardinal which is also inaccessible, then B is a limit cardinal number

and I;C1,CJy (cf. Theorem 6.3 [13] p.605).

Proof. If z< 1, then rank(I(z))<B. As we already mentioned that
an inaccessible 2(I;) (=p) is a limit cardinal, there exists a cardinal
B1 such that rank (I(z)) <(8,<{8. By definition of A(I;), thereispe
PNI, such that 8;<rank(p). Hence rank(I(z))<lrank(p). If B, is
an infinite cardinal so is rank(p). Even if 8; is a finite cardinal, it
can be taken arbitrarily large. Hence, again rank(p) is an infinite
cardinal. Thus, by Lemma 6, z<1,.

Now let z&I,. For any pcP with p(H)Crange(z), we see that
p<l, by Lemma 1 of [11]. Then rank(p) <k(I,) by the inaccessibility

of h(I,). Hence rank(p)<(8. By (ii)) — (i) of Theorem A, we see
that z&J,.

THEOREM 4. Let 8>y be a cardinal number. Let 8 be not a limit
cardinal number. Then Iy=J; (cf. Theorem 6.4 [13] p.605).
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Proof. h(Ig) <pB. Note that rank(p)#p, for any p=I;NP. Thus
rank (p) <8—1, since 8 is not a limit cardinal. On the other hand one
can easily show that there is ¢ € P11, such that rank(g)=pg—1.
Conequently h(Ig) =8—1. By Theorem 2, Ig=J-n+1=Jp

THEOREM 5. Let J be a nonzero closed ideal in an infinite semifinite
factor A. Then there is a cardinal humber a; Wo<a<h+1, where h=
rank(I) (See Lemma 4) suchhat J=J, (cf. Corollary 6.2 [13] p.605).

Proof. Let us put 8=h(J). Then 8>y by Theosrem 1 and Definition
2. When h(J) is accessible, we get J=dJgy by Theorem 2. When
h(J) is inaccessible, I;cJ=J, by Theorem 3. Thus J=1Ip=J,.

REMARK. In [12], the set of selfcommutators in an infinite semifinite
factor has been characterized by introducing the notion of weighted
spectra with respect to J;, h=rank(Z) (cf.[5]).
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