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THE CLOSED IDEALS OF AN INFINITE
SEMIFINITE FACTOR

SA GE LEE, SUNG JE CHO AND SUNG KI KIM

1. Introduction.

Throughout the paper, H denotes an infinite dimensional complex
Hilbert sapce, B (H) the set of all (bounded, linear) operators on H.
Even if it has been a folklore in operator theory to characterize the
nonzero closed (two sided) ideals in B (H) ([6J, [9J, [13J) and the
ideal of relatively compact operators in a IIco-factor ([IJ, [2J, [7J, [8J,
[14J), there has'nt appeared a unified theory for this characterizing
problem, to the best of my knowledge, governing both the cases of
lco-factors and IIco-factors.

The purpose of the paper is to show that there is such a unified way
for characterization of the nonzero closed ideals in an infinite semifinite
factor, based on our earlier work [llJ.

2. Ideals.

LEMMA 1. Any nonzero left ideal 1* of a von Neumann algebra A
contains a nonzero projection.

Proof. Let xEI* and let x=ulxl be the left polar decomposition of
x. Since the partial isometry uEA, we see that /xl=u*xEI*. We
may assume that Ixl *0 without loss of generality. There is e>O such
that E[e, 00) *0, where E( .) is the spectral measure of Ixl. We
abbreviate E[e, 00) to e. Then range (Ixle)crange (Ix!). Since the
origin of the complex plane is an isolated point of the spectrum (J ( Ix I
e), we see that range ( Ix 1e) is closed. Let p be the nonzero range
projection of lxle. Thus p= Ixjy for some yEA, by the strengthening
([llJ Lemma 1.) of R. G. Douglas result ([4J p. 413 Theorem 1),
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since range(p)crange(lxl). It follows that p=y*lxl EI*.

LEMMA 2. If 1* is an ideal in a factor A and contains an infinite
projection p (relative to A), then 1* contains every finite projections
of A.

Proof. Let q be an arbirary finite projection of A. Since A is a
factor and p is infinite, we see that q-<p. Hence q"'Pl~p. Since Pl=
PlpEI*, we can easily show that qEI*.

LEMMA 3. Let 1* be an ideal in a factor A and contain a nonzero
finite projection p of A. Then 1* contains every finite projection q of
A.

Proof. Let p be a nonzero finite projection of A such that pEl*,
and let q be any finite projection of A. If q -< p, then a similar
argument a,s above Lemma 2, we see that qEI*. Now, let p-<q. Let
{qi} iEr be a maximal family of mutually orthogonal subprojections of q
such that P"'qi, for every iEr. Since L: qi~q and q is finite, we see

ier

that the cardinality card (F) of r must be finite. Consequently L: q; E
ier

1*. Now, P-l-q- L: qi by the maximality of {q;};Er. Consequently,
jer

q- L: qi-<P. Again, this implies that q-L: q;EI*. Thus, q= L: qi+
ier ier ier

(q- L: qi) EI*.
ier

THEOREM 1. If 1* is a nonzero ideal in a factor A, then 1* contains
all the finite projections of A.

Proof. Combine the above lemmas 1, 2 and 3.

DEFINITION 1. Let e be a projection in an infinite semi:6..nite von
Neumann algebra A. When e is a finite projection relative to A, we say
that e has the relative finite rank and denote this fact by the symbol
rank (e) <No. Now let e be an infinite projection of A and assume
further that there exists a family lei} iEr of mutually orthogonal nonzero
finite projections in A such that e= L: e;. Then we define the relative

ier

rank rank(e) of e by rank (e) = card (F) , where card(r) is the cardinality
of F ([l1J Definition 1).

By (p. 252 [3J Lemma 6), it is clear that rank (e) of an infinite
projection e in A is well defined independent of the choice of the
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expressions e=L: ei and that rank (e) :S::rank(f), whenever e-< f, e,f are
iEF

infinite projections in A.
For xEA, let lex) denote the left support of x in A that is the range

projection of x in A. For every infinite cardinal a, we define Ia = {xE
A: rank (I (x» <a} and Ja=la, the norm closure of I a in A ([llJ
Definition 3).

For an infinite cardinal a the relative a-topology T a on H is defined
as the locally convex topology on H, generated by the set of all
seminorms PM of the form

xEH~sup{l (x,y) : yEMI},

where M varies over Fa and Fa is the set of all nonzero closed subspaces
of H each of whose range projections belongs to A with the relative
rank<a. Here M I denotes the unit ball of M ([llJ Definition 4).

We put S as the set of all Ta-neighborhoods s of 0 in H such that
s is a finite intersection of sets {yEH: PM(y)<e}, where M varies
over Fa and e varies over the set of all positive numbers. We regard
S as a directed set with respect to the order s:S::t, meaning tCs.

The followingis obtained in ([11] Theorem 1).

THEOREM A. Let A be an infinite se11fifinite von Neumann algebra,
P the set of all projections of A, a an infinite cardinal. The next six
statements are pairwise equivalent.

(i) xEJa •

(ii) If qEP, q(H) cx(H), then rank (q) <a.
(iii) If pEP and x is bounded below on peR), then rank(p)<a.
(iv) For every e>O, there exists pEP such that Ilxpl1~e and rank

(I-p) <a.
( v) x IHI : HI ~ H is norm continuous with respect to T a on HI

and the norm on H, where HI denotes the unit ball of H.
(vi) For every norm bounded net {';s: s ES} in H such that ';S ~ 0

in T a , we have x';s~O in norm.

It is the main purpose of our paper to show that these Ja's just
constitute the set of all nonzero closed ideals of A when A is an infinite
semifinite factor (See Theorem 5). From now on, we only consider
the case when A is an infinite semifinite factor.

LEMMA 4. Let e be an arbitrarily given nonzero finite projection in
A. Then there exists an infinite family {e;} iEr of mutually orthogonal



146 Sa Ge Lee, Sung Je Cho and Sung Ki Kim

nonzero finite projections in A such that p= I: ei and that ei"-'e for all
ler

iEr, where p is any given infinite projection in A.

Proof. By comparability of two projections in a factor and Zorn's
lemma, one can find a maxmal family {Pi} jsr of nonzero mutually
orthogonal finite subprojections of p in A such that pj"-'e for all iEr.
We write f=p- ~ Pi· Then f(~ Pi) =0 and f-< Pi, for all iEr, by

ieF ier

the maximality of {Pi} isr. By the same proof of (II) in ([15J pp. 97­
98), we see that there exists a family Iej} jsr of nonzero finite mutually
orthogonal subprojections ei of p such that p=~ ei and that ej"-'e for

;eF

all iEr.

DEFINITION 2. (An analogue to Definition 6. 2 in [13J p. 604) Let A
be an infinite semifinite factor and let 1:1: be a nonzero ideal of A. The
(relative) height h(I:I:) of 1:1: is defined by

h(I*) =sup {rank(p) : pEP},

when 1* contains at least one infinite projection of A, and

h(I:I:)=No,

when 1* does not contain any infinite projection of A (See Theorem 1).
We call that h (I*) is accessible if there is an infinite projection pEP
in A such that rank(p) =h(I*). Otherwise, the height h(I:I:) IS called
inaccessible.

If the height h(I*) is inaccessible, then it is immediate to see that
h(I*) is a limit cardinal (p.604 [13J).

LEMMA 5. If P and q are projections in A such that rank(p) =rank
(q) :::::: No. then p"-'q.

Proof. We fix a nonzero finite projection e in A. By Lemma 4, there
exist two families {e;} jsr and {Jo} isr each of which consists of nonzero
finite mutually orthogonal projections such that ej"-'e,,-,fi for all iEF
and that p=~ ej, q=~ fi. Consequently, p"-'q.

ier ier

LEMMA 6. Let 1* be a nonzero ideal of A. Let p be an infinite
projection in A such that pEI*. Then for any projection q in A such
that rank(q) s,rank(p), we have that qEI* (cf. p.604 [13J Le1n11ta 6.1)

Proof By Lemma 2, we may assume that q is an infinite projection.
If q-< p, then by a similar argument as the proof of Lemma 2, one
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sees~that qEI*. Let p-<q, then rank(p)~rank(q). Hence rank(p)=
rank(q) with the aid of the hypothesis of the present lemma. Lemma
5 then implies that p"-'q.

THEOREM 2. Let 1* be a two sided ideal of A and let /3=h(I*) '2 ~o.

If the height h(I*) is accessible, then I*=Jp+1 (cf. Theorem, 6.2 [13J
p.604)

Proof. Let xEI*. We want to apply (ii)---+(i) of Theorem A.
Assume that pEP be any projection in A satisfying p(H)cx(H).
Then rank(p)~h(I*)=/3</3+1, noticing pEI* ([l1J Lemma 1). By
(ii) ---+ (i) of Theorem A, we see that xEJp+1• Conversely, let xE
Jp+1• Then there is a sequence: {xn } clp+1 such that Ilxn-xll---+ o.

co

Thus, range (x) c V range (x,,) , the closed linear span of range (Xn) , s.
12=1

On the other hand rank (l (x,,» </3+ 1, that is, rank (l (xn» ~ /3, for
every n. It is easy to see that the relative rank of the projection whose

co

range is V range(x,,) is~ ~o/3= /3. Consequently, rank (l (x» ~/3</3+ l.
n=l

Since h(I*) is accessible, there is pEP nI* such that /3= rank (p).
Since rank(l(x» ~/3=rank(p), we see that lex) EI* by Lemma 6.
Hence x=l(x)xEI*.

THEOREM 3. Let 1* be an ideal of A. Let /3=h(I*) be an infinite
cardinal which is also inaccessible, then /3 is a limit cardinal number
and Ipc]*cJp (cf. Theorem 6.3 [I3] P.605).

Proof. If x E 1p, then rank (l (x» <13. As we already mentioned that
an inaccessible h (I*) ( = 13) is a limit cardinal, there exists a cardinal
/31 such that rank (l (x» </31 <13. By definition of h(I*), there is p E
P n1* such that /31:-::;; rank (p) . Hence rank (l (x) ) <rank (p). If 131 is
an infinite cardinal so is rank (p). Even if /31 is a finite cardinal, it
can be taken arbitrarily large. Hence, again rank (p) is an infinite
cardinal. Thus, by Lemma 6, xEI*.

Now let xEI*. For any pEP with p(H) crange(x) , we see that
pEI* by Lemma 1 of [l1J. Then rank(p) <h(I*) by the inaccessibility
of h(I*). Hence rank (p) <13. By (ii) ---+ (i) of Theorem A, we see
that XEJp•

THEOREM 4. Let 13~ No be a cardinal number. Let 13 be not a limit
cardinal number. Then Ip=Jp (c/. Theorem, 6.4 [13J p.605).
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Proof. h(Ip) ~f3. Note that rank:(p) =I={3, for any pElpnp. Thus
rank (p) ~ f3 -1, since (3 is not a limit cardinal. On the other hand one
can easily show that there is q E P nIp such that rank(q) =(3-1.
Conequently h(Ip)={3-l. By Theorem 2, Ip=J(p-l> +1= J p.

THEOREM 5. Let J be a nonzero closed ideal in an infinite semifinite
factor A. Then there is a cardinal humber a; ~o~a~h+1, where h=
rank (I) (See Lemma 4) suchhat J=Ja (cf. Corollary 6.2 [13J p.605).

Proof. Let us put f3=h(J). Then (3:2:~o by Theosrem 1 and Definition
2. When h(J) is accessible, we get J=JP+1 by Theorem 2. When
h(J) is inaccessible, IpcJcJp, by Theorem 3. Thus J-Ip=Jp.

REMARK. In [12J, the set of selfcommutators in an infinite semifinite
factor has been characterized by introducing the notion of weighted
spectra with respect to Jh, h=rank(I) (d. [5J).
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