THE CLOSED IDEALS OF AN INFINITE SEMIFINITE FACTOR

SA GE LEE, SUNG JE CHO AND SUNG KI KIM

1. Introduction.

Throughout the paper, H denotes an infinite dimensional complex Hilbert sapce, B(H) the set of all (bounded, linear) operators on H. Even if it has been a folklore in operator theory to characterize the nonzero closed (two sided) ideals in B(H) ([6], [9], [13]) and the ideal of relatively compact operators in a II_{∞} -factor ([1], [2], [7], [8], [14]), there has nt appeared a unified theory for this characterizing problem, to the best of my knowledge, governing both the cases of I_{∞} -factors and II_{∞} -factors.

The purpose of the paper is to show that there is such a unified way for characterization of the nonzero closed ideals in an infinite semifinite factor, based on our earlier work [11].

2. Ideals.

LEMMA 1. Any nonzero left ideal I_* of a von Neumann algebra A contains a nonzero projection.

Proof. Let $x \in I_*$ and let x = u|x| be the left polar decomposition of x. Since the partial isometry $u \in A$, we see that $|x| = u^*x \in I_*$. We may assume that $|x| \neq 0$ without loss of generality. There is $\varepsilon > 0$ such that $E[\varepsilon, \infty) \neq 0$, where $E(\cdot)$ is the spectral measure of |x|. We abbreviate $E[\varepsilon, \infty)$ to e. Then range $(|x|e) \subset \text{range } (|x|)$. Since the origin of the complex plane is an isolated point of the spectrum $\sigma(|x|e)$, we see that range (|x|e) is closed. Let p be the nonzero range projection of |x|e. Thus p = |x|y for some $y \in A$, by the strengthening ([11] Lemma 1.) of R.G. Douglas result ([4] p. 413 Theorem 1),

Received May 20, 1985.

Supported by a grant from the Korea Science and Engneering Foundation in 1984-85.

since range(p) \subseteq range(|x|). It follows that $p=y^*|x| \in I_*$.

LEMMA 2. If I_* is an ideal in a factor A and contains an infinite projection p (relative to A), then I_* contains every finite projections of A.

Proof. Let q be an arbitrary finite projection of A. Since A is a factor and p is infinite, we see that q < p. Hence $q \sim p_1 \le p$. Since $p_1 = p_1 p \in I_*$, we can easily show that $q \in I_*$.

LEMMA 3. Let I_* be an ideal in a factor A and contain a nonzero finite projection p of A. Then I_* contains every finite projection q of A.

Proof. Let p be a nonzero finite projection of A such that $p \in I_*$, and let q be any finite projection of A. If $q \prec p$, then a similar argument as above Lemma 2, we see that $q \in I_*$. Now, let $p \prec q$. Let $\{q_i\}_{i \in I'}$ be a maximal family of mutually orthogonal subprojections of q such that $p \sim q_i$, for every $i \in I'$. Since $\sum_{i \in I'} q_i \leq q$ and q is finite, we see that the cardinality card (I') of I' must be finite. Consequently $\sum_{i \in I'} q_i \in I_*$. Now, $p \not\prec q - \sum_{i \in I'} q_i$ by the maximality of $\{q_i\}_{i \in I'}$. Consequently, $q - \sum_{i \in I'} q_i \prec p$. Again, this implies that $q - \sum_{i \in I'} q_i \in I_*$. Thus, $q = \sum_{i \in I'} q_i + (q - \sum_{i \in I'} q_i) \in I_*$.

THEOREM 1. If I_* is a nonzero ideal in a factor A, then I_* contains all the finite projections of A.

Proof. Combine the above lemmas 1, 2 and 3.

DEFINITION 1. Let e be a projection in an infinite semifinite von Neumann algebra A. When e is a finite projection relative to A, we say that e has the *relative finite rank* and denote this fact by the symbol rank $(e) < \aleph_0$. Now let e be an infinite projection of A and assume further that there exists a family $\{e_i\}_{i \in I}$ of mutually orthogonal nonzero finite projections in A such that $e = \sum_{i \in I} e_i$. Then we define the *relative rank* rank (e) of e by rank $(e) = \operatorname{card}(I)$, where $\operatorname{card}(I)$ is the cardinality of I ([11] Definition 1).

By (p. 252 [3] Lemma 6), it is clear that rank(e) of an infinite projection e in A is well defined independent of the choice of the

expressions $e = \sum_{i \in F} e_i$ and that rank $(e) \le \text{rank}(f)$, whenever e < f, e, f are infinite projections in A.

For $x \in A$, let l(x) denote the left support of x in A that is the range projection of x in A. For every infinite cardinal α , we define $I_{\alpha} = \{x \in A : \text{rank } (l(x)) < \alpha\}$ and $J_{\alpha} = \overline{I}_{\alpha}$, the norm closure of I_{α} in A ([11] Definition 3).

For an infinite cardinal α the relative α -topology T_{α} on H is defined as the locally convex topology on H, generated by the set of all seminorms p_M of the form

$$x \in H \rightarrow \sup\{|(x, y): y \in M_1\},$$

where M varies over F_{α} and F_{α} is the set of all nonzero closed subspaces of H each of whose range projections belongs to A with the relative rank $<\alpha$. Here M_1 denotes the unit ball of M ([11] Definition 4).

We put S as the set of all T_{α} -neighborhoods s of 0 in H such that s is a finite intersection of sets $\{y \in H : p_M(y) < \varepsilon\}$, where M varies over F_{α} and ε varies over the set of all positive numbers. We regard S as a directed set with respect to the order $s \le t$, meaning $t \subset s$.

The following obtained in ([11] Theorem 1).

THEOREM A. Let A be an infinite semifinite von Neumann algebra, P the set of all projections of A, α an infinite cardinal. The next six statements are pairwise equivalent.

- (i) $x \in J_{\alpha}$.
- (ii) If $q \in P$, $q(H) \subset x(H)$, then rank $(q) < \alpha$.
- (iii) If $p \in P$ and x is bounded below on P(H), then $rank(p) < \alpha$.
- (iv) For every $\varepsilon > 0$, there exists $p \in P$ such that $||xp|| \ge \varepsilon$ and rank $(I-p) < \alpha$.
- (v) $x|H_1:H_1\to H$ is norm continuous with respect to T_a on H_1 and the norm on H, where H_1 denotes the unit ball of H.
- (vi) For every norm bounded net $\{\xi_s : s \in S\}$ in H such that $\xi_s \to 0$ in T_α , we have $x\xi_s \to 0$ in norm.

It is the main purpose of our paper to show that these $J_{\alpha}'s$ just constitute the set of all nonzero closed ideals of A when A is an infinite semifinite factor (See Theorem 5). From now on, we only consider the case when A is an infinite semifinite factor.

LEMMA 4. Let e be an arbitrarily given nonzero finite projection in A. Then there exists an infinite family $\{e_i\}_{i\in\Gamma}$ of mutually orthogonal

nonzero finite projections in A such that $p = \sum_{i \in \Gamma} e_i$ and that $e_i \sim e$ for all $i \in \Gamma$, where p is any given infinite projection in A.

Proof. By comparability of two projections in a factor and Zorn's lemma, one can find a maxmal family $\{p_i\}_{i\in\Gamma}$ of nonzero mutually orthogonal finite subprojections of p in A such that $p_i \sim e$ for all $i \in \Gamma$. We write $f = p - \sum_{i \in \Gamma} p_i$. Then $f(\sum_{i \in \Gamma} p_i) = 0$ and $f < p_i$, for all $i \in \Gamma$, by the maximality of $\{p_i\}_{i \in \Gamma}$. By the same proof of (II) in ([15] pp. 97-98), we see that there exists a family $\{e_i\}_{i \in \Gamma}$ of nonzero finite mutually orthogonal subprojections e_i of p such that $p = \sum_{i \in \Gamma} e_i$ and that $e_i \sim e$ for all $i \in \Gamma$.

DEFINITION 2. (An analogue to Definition 6.2 in [13] p. 604) Let A be an infinite semifinite factor and let I_* be a nonzero ideal of A. The (relative) height $h(I_*)$ of I_* is defined by

$$h(I_*) = \sup \{ rank(p) : p \in P \},$$

when I_* contains at least one infinite projection of A, and

$$h(I_*) = \aleph_0,$$

when I_* does not contain any infinite projection of A (See Theorem 1). We call that $h(I_*)$ is accessible if there is an infinite projection $p \in P$ in A such that rank $(p) = h(I_*)$. Otherwise, the height $h(I_*)$ is called inaccessible.

If the height $h(I_*)$ is inaccessible, then it is immediate to see that $h(I_*)$ is a limit cardinal (p. 604 [13]).

LEMMA 5. If p and q are projections in A such that $rank(p) = rank(q) \ge \aleph_0$, then $p \sim q$.

Proof. We fix a nonzero finite projection e in A. By Lemma 4, there exist two families $\{e_i\}_{i\in\Gamma}$ and $\{f_i\}_{i\in\Gamma}$ each of which consists of nonzero finite mutually orthogonal projections such that $e_i \sim e \sim f_i$ for all $i \in \Gamma$ and that $p = \sum_{i\in\Gamma} e_i$, $q = \sum_{i\in\Gamma} f_i$. Consequently, $p \sim q$.

LEMMA 6. Let I_* be a nonzero ideal of A. Let p be an infinite projection in A such that $p \in I_*$. Then for any projection q in A such that $rank(q) \le rank(p)$, we have that $q \in I_*$ (cf. p.604 [13] Lemma 6.1)

Proof By Lemma 2, we may assume that q is an infinite projection. If q < p, then by a similar argument as the proof of Lemma 2, one

sees that $q \in I_*$. Let $p \prec q$, then $\operatorname{rank}(p) \leq \operatorname{rank}(q)$. Hence $\operatorname{rank}(p) = \operatorname{rank}(q)$ with the aid of the hypothesis of the present lemma. Lemma 5 then implies that $p \sim q$.

THEOREM 2. Let I_* be a two sided ideal of A and let $\beta=h(I_*)\geq \aleph_0$. If the height $h(I_*)$ is accessible, then $I_*=J_{\beta+1}$ (cf. Theorem 6.2 [13] p. 604)

Proof. Let $x \in I_*$. We want to apply (ii) \to (i) of Theorem A. Assume that $p \in P$ be any projection in A satisfying $p(H) \subset x(H)$. Then $\operatorname{rank}(p) \leq h(I_*) = \beta < \beta + 1$, noticing $p \in I_*$ ([11] Lemma 1). By (ii) \to (i) of Theorem A, we see that $x \in J_{\beta+1}$. Conversely, let $x \in J_{\beta+1}$. Then there is a sequence: $\{x_n\} \subset I_{\beta+1}$ such that $\|x_n - x\| \to 0$. Thus, $\operatorname{range}(x) \subset \bigvee_{n=1}^{\infty} \overline{\operatorname{range}(x_n)}$, the closed linear span of $\operatorname{range}(x_n)$'s. On the other hand $\operatorname{rank}(l(x_n)) < \beta + 1$, that is, $\operatorname{rank}(l(x_n)) \leq \beta$, for every n. It is easy to see that the relative rank of the projection whose range is $\bigvee_{n=1}^{\infty} \operatorname{range}(x_n)$ is $\leq \aleph_0 \beta = \beta$. Consequently, $\operatorname{rank}(l(x)) \leq \beta < \beta + 1$. Since $h(I_*)$ is accessible, there is $p \in P \cap I_*$ such that $\beta = \operatorname{rank}(p)$. Since $\operatorname{rank}(l(x)) \leq \beta = \operatorname{rank}(p)$, we see that $l(x) \in I_*$ by Lemma 6. Hence $x = l(x) x \in I_*$.

THEOREM 3. Let I_* be an ideal of A. Let $\beta=h(I_*)$ be an infinite cardinal which is also inaccessible, then β is a limit cardinal number and $I_{\beta} \subset I_* \subset J_{\beta}$ (cf. Theorem 6.3 [13] p.605).

Proof. If $x \in I_{\beta}$, then $\operatorname{rank}(l(x)) < \beta$. As we already mentioned that an inaccessible $h(I_*)$ (= β) is a limit cardinal, there exists a cardinal β_1 such that $\operatorname{rank}(l(x)) < \beta_1 < \beta$. By definition of $h(I_*)$, there is $p \in P \cap I_*$ such that $\beta_1 \leq \operatorname{rank}(p)$. Hence $\operatorname{rank}(l(x)) < \operatorname{rank}(p)$. If β_1 is an infinite cardinal so is $\operatorname{rank}(p)$. Even if β_1 is a finite cardinal, it can be taken arbitrarily large. Hence, again $\operatorname{rank}(p)$ is an infinite cardinal. Thus, by Lemma 6, $x \in I_*$.

Now let $x \in I_*$. For any $p \in P$ with $p(H) \subset \operatorname{range}(x)$, we see that $p \in I_*$ by Lemma 1 of [11]. Then $\operatorname{rank}(p) < h(I_*)$ by the inaccessibility of $h(I_*)$. Hence $\operatorname{rank}(p) < \beta$. By (ii) \to (i) of Theorem A, we see that $x \in J_\beta$.

THEOREM 4. Let $\beta \ge \aleph_0$ be a cardinal number. Let β be not a limit cardinal number. Then $I_{\beta} = J_{\beta}$ (cf. Theorem 6.4 [13] p. 605).

Proof. $h(I_{\beta}) \leq \beta$. Note that rank $(p) \neq \beta$, for any $p \in I_{\beta} \cap P$. Thus rank $(p) \leq \beta - 1$, since β is not a limit cardinal. On the other hand one can easily show that there is $q \in P \cap I_{\beta}$ such that rank $(q) = \beta - 1$. Conequently $h(I_{\beta}) = \beta - 1$. By Theorem 2, $I_{\beta} = J_{(\beta-1)+1} = J_{\beta}$.

THEOREM 5. Let J be a nonzero closed ideal in an infinite semifinite factor A. Then there is a cardinal humber α ; $\aleph_0 \le \alpha \le h+1$, where h=rank(I) (See Lemma 4) such that $J=J_\alpha$ (cf. Corollary 6.2 [13] p.605).

Proof. Let us put $\beta = h(J)$. Then $\beta \ge \aleph_0$ by Theorem 1 and Definition 2. When h(J) is accessible, we get $J = J_{\beta+1}$ by Theorem 2. When h(J) is inaccessible, $I_{\beta} \subset J \subset J_{\beta}$, by Theorem 3. Thus $J = \overline{I}_{\beta} = J_{\beta}$.

REMARK. In [12], the set of selfcommutators in an infinite semifinite factor has been characterized by introducing the notion of weighted spectra with respect to J_h , $h=\operatorname{rank}(I)$ (cf. [5]).

ACKNOWLEDGEMENT. The author wishes to thank Professors John Ernest and Gerald Edgar, as the present work is born from the past experiences in our joint work [5].

References

- 1. M. Breuer, Fredholm theories in von Neumann algebras I. Math. Ann. 178 (1968), 243-254.
- 2. _____, Fredholm theories in von Neumann algebras II. Math. Ann. 180 (1969), 313-325.
- J. Dixmier, Von Neumann algebras. (English translation) 1981, North-Holland Publishing Co.
- 4. R.G. Douglas, On majorization, factorization, and the range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- G. Edgar, J. Ernest and S.G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1) (1971), 61-80.
- B. Gramsch, Eine Idealstrukture Banachscher Operatoralgebren, J. Reine Angew. Math. 225 (1967), 97-115.
- 7. V. Kaftal, On the theory of compact operators in von Neumann algebras I. Indiana Unvi. Math. J. 26(1) (1977), 447-457.
- 8. _____, On the theory of compact operators in von Neumann algebras II.

 Indiana Univ. Math. J. 79 (1) (1978), 129-137.
- 9. S.G. Lee, I.H. Lee, S.M. Kim and D.P. Chi, A characterization of closed ideals in L(H), Proc. Coll. Natur. Sci., SNU. 8 (1) (1983), 5-8.
- 10. S.G. Lee, A general Calkin representation, J. of Korean Math. Soc. 20 (1)

- (1983), 61-65.
- 11. S.G.Lee, S.M. Kim and D.P.Chi, Closed ideals in a semifinite, infinite von Neumann algebra, arising from relative ranks of its elements. To appear in Bull. Korean Math. Soc. 21 (2) 1984.
- 12. S.G. Lee, S. J. Cho and S. H. Kye, Selfcommutators in an infinite semifinite factor. Preprint.
- 13. E. Luft, The two-sided closed ideals of the algebra of bounded linear operators on a Hilbert space. Czechoslovak Math. J. 18 (93) (1968), 595-605.
- 14. M.G. Sonis, On a class of operators in von Neumann algebras with Segal measure on the projectors, Math. USSR Sbornik 13(3) (1971), 344-359.
- 15. S. Stratila and L. Zsido, Lectures on von Neumann algebras, (1979), Abacus Press.

Seoul National University Seoul 151, Korea