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INTRINSIC STRUCTURES IN AN ORDERED
VECTOR SPACE*

KYUNG CHAN MIN

Introduction

On a partially ordered vector space, there are various intrmsIc
structures, in the sense that they are determined by the order structure.
In particular, order convergence, relative uniform convergence and order
boundedness have long been studied with extensive applications in the
theory of ordered topological vector spaces. The concept of order
convergence has been introduced by G. Birkhoff [3J and L. V.
Kantorovitch [12J. The concept of relative uniform convergence goes
back to E. H. Moore [15]. The order bomology, the bomology generated
by order bounded sets, has been introduced by M-T. Akkar [IJ. In
developing the theory of ordered topological vector spaces, interrelations
among these intrinsic structures have been played essential roles.

The purpose of this paper is to display intimate relationships among
these intrinsic structures in an ordered vector space by putting them
into suitable settings. Following a preliminary section, we show order
convergence and relative uniform convergence induce subcategories of
the category of convergence vector spaces and investigate standard
constructions in these categories. The notion of equivalence of order
convergence and relative uniform convergence was introduced by A. G.
Pinsker [cf. 13J and was employed by W. A.]. Luxemburg and A. C.
Zaanen [14J, who say that in this case order convergence is stable. In
§ 2, we generalize the notion of stability of order convergence and

examine permanence properties. The stability of order convergence is
an important necessary condition for order convergene to be topological.
In § 3, we show that order bounded sets also induce a subcategory of
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the category of homological vector spaces. As an important result, the
category of relative uniform convergence vector spaces is shown to be
isomorphic to the category of order hound bomological vector spaces
with a generating positive cone.

For ordered vector space theory we generally follow the terminology
of Y-C. Wong and K-F. Ng [19J and for general categorical background
we refer to H. Herrlich and G. E. Strecker [9J.

o. Preliminaries.

CvV will denote the category of convergence spaces [2J (=limit
vector spaces in [8J) and continuous linear maps. The subcategory
determined by all locally convex convergence spaces in CvV will be
denoted by CCvV. BoV will denote the category of bomological spaces
[IOJ and hounded linear maps. The subcategory determined by all
convex homological spaces in BoV will be denoted by CBoV.

We introduce some intimate relationships among convergence vector
spaces, locally convex spaces and bomological vector spaces.

A functor B: CvV - BoV (called the von-Neumann functor) is
determined by B(E, A)=(E, £A) and B(f)-f, where £A={Bf::E:
1ft • BE A (O)}, 1ft is the neighhorhood filter at 0 in R and a functor
K : BoV-CvV is defined by K(E, J.S) = (E, A.g) and K(f) f, where
A.g(O)=the set of all filters on E containing 1ft. B for some BE£ and
A.g(x)=A.g(O)+x for each xEE. The restrictions of Band K between
CCvV and CBoV are functors. We will use the same notations Band
K for the restriction of the functors Band K, respectively. It is well­
known [5J that the functor K is a left adjoint of the functor B.

The category lCV is formed by all locally convex spaces and
continuous linear maps. A functor B: lCV-CBoV is defined by BE=
(E, £t) and B(f) f, where £t=the collection of bounded subsets of
E (called the von-Neumann bornology on E), and a functor T: CBoV_
lCV is defined by T(E,£)=(E,lftt ) and T(f)=f, where Iftt is the
neighborhood filter at 0 generated by the filter base co( n 1ft. B) =

Bet€

{convex hull of U ( -CB, CB) . B : CB>O}. The functor T is a left edjoint
Bet€

of B (d. [IOJ). The category lCV is a bireflective subcategory of the
category CCvV (d. [8J).
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A locally convex space E is bornological [10J iff E= TBE. For every
EECBoV, the locally convex space TE is homological.

1. Intrinsic convergences.

In this section, we recall two intrinsic convergences, order convergence
and relative uniform convergence, in an ordered vector space, which
will induce subcategories of the category CvV. We will investigate the
behavior of intrinsic convergences in subspaces, products and coproducts
in the category OV of ordered vector spaces.

A. Order convergence.

We show that order convergence induces a subcategory of CvV.

1.1. DEFINITION: (d. [7J) Let E be an ordered vector space. A subset
A of E is said to be down directed to 0 in E if for each x, yEA there
exists zEA such that z~x and z~y, and inf A=O in E. A :filter
'J on E is said to ·be order convergent to 0 if 'J~'JE(A) (or simply
'J (A)) for some subset A of E which is down directed to 0, where
'JE(A) = the filter on E generated by the family {[-a, aJ : aEA}.

We denote this convergence by "7" or simply "~".

REMARK: Our definition of order convergence is equivalent to A. J.
Ward's [18J: A filter 'J is "order convergent" to 0 in E if there exists
a filter «/ with ;}~«/ such that sup L(<<i)=inf U(<</) =0, where L(!j)
= {xEE : x~G for some GE«/} and U(m is de.fined dually. (Cf.
2.5 in [16J)

An ordered vector space E is said to be Archimedean if x ~0
whenever nx~y for all nEN and some yEE

PROPOSITION (3.9, [16J): Let E be an ordered vector space, AO (0) =

the set of all order convergent filters to 0 in E and AO (x) =Ao (0) +x
for each xEE. If E is Archimedean and has a generating positive cone,
i. e. E=C-C, then AO = {AO (x) : xEE} is a locally convex convergence
structure on E. (We will refer to (E, AO) as an order convergence
vector space and denote simply by (E,o)).

REMARK. Since the scalar multiplication is continuous, it is easy to
see that the condition "E is Archimedean and E=C-C" are necessary
for AO to be a convergence vector structure on E.
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1.2. DEFINITION: Let E and F be Archimedea:n ordered vector spaces
with a generating positive cone. A linear map f: (E, o)-(F, 0) is
called o-continuous if f(AHo)) f;AHO). The category OC is formed
by all order convergence vector spaces and all o-continuous linear maps.

PROPOSITION: OC is a subcategory of CvV.

Now we examine the behavior of order convergence in subspaces,
products and coprducts in the category OV.

1. 3. A subspace M of an ordered vector space E with a generating
positive cone does not have to have a generating positive cone. Thus,
in general, (M, AD) is not an order convergence vector space.

PROPOSITION: Let E be an order complete vector lattice and M a band
in E. Then (M,o) is a subspace of (E,o) in CvV.

Proof. Let {J be a filter on M. Suppose {J-i;o in M. Then there exists

Af;M which is down directed to 0 in M such that {J2{JM(A). Since
M is a solid subset of E infA=O in E and hence A is down directed

to 0 in E. Hence ci ({J) ;;2 {JE(A) implies ciW)70.

Conversely, suppose ci(m+O. Then there exists A~E which is

down directed to 0 in E such that ci({J)2{JE(A). (We may assume
that for each FE{J, OEF). Let Q= {FE{J: F~[-a,aJ for SOme
aEA} and let XF=SUP F and YF=inf F for each FEQ. Then for each

E E

FEQ YF~O~XF'XF and YF is in M and hence ZF=XFV( -YF) EM since
M is a band of E. Let A*= {ZF : FEQ}. Then A* is down directed

to 0 in M. Hence {J2{JM(A*) implies {J70.

1. 4. Let {Eil I be a family of Archimedean ordered vector spaces
with a generating positive cone, where I is an index set. Then the
product n Ei in OV is also an Archimedean ordered vector space with

I

a generating positive cone. Let pr/: (n E i , 0) - (E i , 0) be the
I

projection function for each iE1. Then the linear map pr/ is continuous
for each i E 1.

PROPOSITION (2.16, [16J): If I is finite, then ((n E i , 0), (pr/)I)
I

is the product of the family {(Ei , o)} I in CvV.
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REMARK: For an arbitrary index set I, 1: (n E;, o)~n (E;, 0) is
I 1

continuous. However, in general, for an infinite index set I, 1: n (E;,
I

o)~(n E;,o) is not continuous. Let E;=R for each iEI. Then the
I

neighborhood filter rio at 0 in n (R,o) is not order convergent to O.
I

Note that (R,o) has the usual topology.

1. 5. Coproducts in OV behave nicely.

Let {E;} [ be a family of Archimedean ordered vector spaces with a
generating positive cone, where I is an arbitrary index set. Then the
coroduct ffi E; in OV is also an Archimedean ordered vector space with

I

a generating positive cone. Let e;*: (E;, o)~(ffiE;,0) be the canonical
I

injection. Then the linear map e;* is continuous.

PROPOSITION: For an arbitrary index set I, ((ffiE;, 0), (e;*)[) is
I

the coproduct of the family {(E;, o)} I in CvV.

Proof. Since e;* is a continuous linear map for each iEI, 1 : JI (E i ,
I

o)~(ffiE;, 0) is continuous by the co-universal property of the coproduct
I 0

U (E;,o) in CvV. Conversely, let <1"-0 in ffiE;. Then there exists
I I

A~ffiE; which is down directed to 0 such that .g2.g(A). Take any
I

aEA and FaE.g with Fa~ [-a, a]. Then there exists a finite subset
J of I such that a;=O for all iEI\J. Therefore eJoprJ(Fa)=Fa, where
prJ is the projection onto n E;. Observe that prJ (A) is down directed

J

to 0 in n E; and prJ(~) 2~(prJ(A)) and hence prJ(F)~O in n E i •
J J

For each FE.g, eJ oprJ(F)2FnFa and hence ~2eJ(prJ(~)), i.e. <1"
converges to 0 in U (E;, 0).

I

B. Relative uniform convergence.

We introduce relative uniform convergence in an ordered vector space
with a filter formation and study a related subcategory of CvV.

1. 6. DEFINITION: Let (E, C) be an ordered vector space. A filter <1" on
E is said to be relative uniform convergent to 0 if <1"2.gE(a) (or simply
.g(a)) for some aEC, where ~E(a)=the filter on E generated by the
family {[ -n-Ia, n-Ia] : nEN}. We denote this convergence by "7"

• 1 "r"or sImply -.
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REMARK: If E is Archimedean, <1~0 imlies <1~0, since {n- 1a} N is
down directed to 0 in E. H. Nordman [16J introduced this notion,
called "equable order convergence", under the restrictions, E is Archime­
dean and E=C-C as a special kind of order convergence.

PROPOSITION: Let E be an ordered vector space, Ar (0) =the set of all
relative uniform convergent filters to 0 in E and Ar(x) =Ar(O)+x for
each xEE If E=C-C, then Ar= {Ar(x) : xEE} is a locally convex
convergence vector structure on E. (We will refer to (E, Ar) as a
relative uniform convergence vector space and denote by (E, r».

Proof. By routine work, it is easy to see that Ar is a convergence
structure on E and + : (E, Ar) X (E, Ar)-t(E, Ar) is continuous. For
any xEE, rrt· x~ 0, since rrt· x2<1(Xl+X2), where X=XI-X2,
XhX2EC. Moreover, for any aEC, (~(a)+rrt· x)+axf;(rrt+a) • (<1(a)
+x). Hence· :R X (E, Ar)-t(E, Ar) is continuous.

REMARKS: The condition "E=C-C" is necessary for Ar to be a
convergence vector structure on E, since the scalar multiplication is
continuous. If E is Archimedean, then C is closed: Let x E C. Then
there exists ~EAr(x) such that FnG=f::.ifJ for all FE<1. Since ~-x2

<1(a) for some aEC, -x~n-l a for all nEN and hence -x::;:;;O, i. e.
xEC. For an ordered vector space E with E=C-C, (E, r) is topologi­
cal if and only if E has an order-unit. (d. 2.2, [17J) Hence we can
show that different vector orders on a vector space may induce the
same relative uniform convergence: In R2, let C1=the usual positive
cone and C2= {(x, y) ECl : y::;:;;x}. Then E l= (R2, C1) and E2=(R2, C2)
have order-units and hence (El> r) and (E2, r) are topological. Moreover,
since C1 and C2 induce Archimedean orders, (Eh r) and (E2, r) are
Hausdorff. Therefore (Eh r) = (E2, r), while C2 S;C1•

1. 7. DEFINITION: Let E and F be ordered vector spaces with a genera­
ting positive cone. A linear map f: (E, r) -t (F, r) is called r-continuous
if f(AEr(o» ~AF(O).

The category RU is formed by all relative uniform convergence vector
spaces and r-continuous linear maps.

PROPOSITION: RU is a subcategory of CvV.

REMARK: Cleary, every positive linear map f: (E, r)~(F, r) IS
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r-continuous. However a positive linear map f: (E, o)~(F, 0) is not
necessarily o-continuous: Consider the following sequence {fn} N in the
space C[O, IJ, of all real-valued continuous functions on [0, 1J, with
the natural order; For each nEN, fn(x)=1 on [O,n- I ], linear on [n- I

n-2J, and 0 on [n-2,IJ. Then the sequence {fn} N is down directed
to o. Define a map H: C[O, I]~R by H(fn) f,,(O). Then H is a
positive linear map, while it is not o-continuous, since H (fn) = 1 for
all nEN.

Now we examine the behavior of relative uniform convergence in
subspaces, products and coproducts in the category OV.

1. 8. PROPOSITION: Let E be an ordered vector space with E=C-C
and M a confinal subspace of E, i. e. for each xEC, there is yEF
such that x~y. Then (M,r) is a subspace of (E,r) in CvV.

Proof. The canonical injection ci: (M, r)~(E, r) is continuous, since
ci is positive. Let a be a filter on M such that ci(a)7 O. Then
there exists aEC such that ci(a) "daE(a). Since M is a connal subspace
of E, there exists bEM such that a~b and hence aE(a) "daE(b).

Thus a"daM(b), i. e. a-i; o.
1. 9. Let {Eo}] be a family of ordered vector spaces with a generating

positive cone, where I is an index set. Let Pri*: (n Ei, r)~(Ei' r)
I

be the projection function for each iEI. Then the positive linear map
Pri* is continuous for each i E 1.

PROPOSITION (3.14, [16J): If lis finite, then ((D Ei, r), (pri*)])
I

is the product of the family {(E;, r)}] in CvV.

REMARK. For an arbitrary index set I, 1: (n Ei, r) ~ n(Ei, r) is
I I

continuous. However, in general, 1: n(E i , r)~(n E;, r) is not con-
I I

tinuous for an infinite index set I by the same reasoning as in Remark
1.4.

1.10. Coproducts in OV also behave nicely.

Let {Ei }] be a family of ordered vector spaces with a generating
positive cone, where I is an arbitrary index set.

Let ei*: (Ei,r)~(EB Ei,r) be the canonical injection for each iEI.
I

Then the positive linear map ei* is continuous for all iE1.
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PROPOSITION: For an arbitrary index set I, ((EfJE;, r), (e;*)[) is the
I

coproduct of the family {(E;, r)} [ in CvV.

Proof. The proof is similar to that of Prop. 1. 5.

2. Stability of order convergence.

We introduce the notion of stability of order convergent filters in an
ordered vector space and examine some permanence properties.

2.1. In Luxemburg and Zaanen [14J, order convergence for sequences
o

in a vector lattice is said to be "stable" if for any sequence X n ---+ 0
there exists a sequence {An} N of real numbers such that 0:;;;; An i 00 and

o
Anin-O. In R. Cristescu [6J, a (i-complete vector lattice in which
order convergence for sequences is stable is called a regular space.
Indeed, in an Archimedean vector lattice order convergence is stable if
and only if order convergence and relative uniform convergence for
sequences are equivalent. We generalize this notion to order convergent
filters.

DEFINITION: Order convergence in an ordered vector space is said to
be stable if it is equivalent to relative uniform convergence.

REMARKS: If E is an Archimedean ordered vector space with E=C­
C, then order convergence is stable if and only if 1 : (E, o)-(E, r) is
continuous. Hence order convergence in C[0, 1J with the usual order is
not stable. (Consider the sequence {in} N mentioned in Remark 1. 7)
If order convergence in an ordered vector space E with E=C -C is
stable, then E must be Archimedean: Indeed, for each aEC,

ilea) 2il(A) for some A~E which is down directed to 0 and hence
inf n-1a=0.

N

2.2 H. Nordman (2.3, [17J) and S. Y. Xu (3, [20J) showed that
for an Archimedean ordered vector space with E=C-C, (E, 0) is
topological if and only if E has an order-unit e and order convergence
on E is stable. In this case, (E,o) is an order-unit normed space (1,
[20J). Further, if E is order complete, then (E,o) is a Banach space
since every order complete order-unit normed space is complete (3.7.1,
3.7.4, [l1J). Thus it is interesting to check permanence properties
of stability of order convergence.
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2.3. PROPOSITION: For a countable index set I, let {E j} I be a family
of Archimedean ordered vector spaces with a generating positive cone.
If for every iEI order convergence on E j is stable, then so is order
convergence on the product n E j in OV.

I

Proof. Let A be a down directed subset of n E j to O. Then for each
I

iEI pr;(A) is down directed to 0 in E j and hence there exists ejECEj
such that :J(prj(A»':;2:J(ej). Take a*EA and let e=(el+al*,2(ez+az*
), ... , i(ej+a;*), ... ). Fix nEN. Then for each k=l, ... , n, there exists
akEA such that prk(ak) ~n-lek and hence prk(ak) ~n-lk(ek+ak*)'
Take anEA such that an~a1, aZ, ••• , an, a* (A is down directed).
Then an~n-le. Therefore :J(A) ':;2:J(e) in n E j •

I

REMARK: In general, this Proposition is not true for a uncountable
index set 1.

COUNTEREXAMPLE: Consider DR, where I is a uncountable index set.
I

For each finite subset J of I and for each mEN, we define a function
fJ,m : I~R by fJ> m(t)=m-1 if tEJ, and 1 otherwise. Then A= {fJ,m:
J is a finite subset of I, mEN} is down directed to O. Suppose order
convergence on nR is stable, then there exists e;;' 0 in DR such that

I I

:J(A) ;;2:J(e). Hence for each nEN there exists a finite subset I n of I
and men) EN such that iJ ,,'mCn) ~n-le and therefore for each tEI\J",
n'fJ",mCn) (t) =n·l=e(t). Observe that 1\ U In::f=¢J. Thus for any tE

N

I\U I n n~e(t) for all nEN, which is impossible.
N

2. 4. Stability of order convergence on an ordered vector space is not
inherited by a subspace in general.

COUNTEREXAMPLE: Let X= {l, 2-1, 3-1, ••• , n-1, ... } U to} be a subspace
of [O,lJ. Then the space C(X) of all real-valued continuous functions
on X with the usual order is an Archimedean ordered vector space
with a generating positive cone. For each nEN, let fn(x)=O(n-l~x

~1) and 1 (0~x~(n+1)-1). Then the setA={fn}N' is down directed
to O. However :J(A) does not relative uniform converge to 0 obviously.
Thus order convergence on C(X) is not stable, while RX is stable by
the above Proposition.

2.5. PROPOSITION: For an arbitrary inde:x set I, let {E j} I be a family
of Archimedean ordered vector spaces with a generating positive cone.
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If for each i E I order convergence on E i is stable, then so is order
convergence on the coproduct Ef)Ei in OV.

I

Proof. Suppose a subset A of Ef)Ei is down directed to O. Fix aEA
I

and let J be a finite subset of I such that ai=O for all iEI\J. Observe
that prJ(A) is down directed to 0 in ~Ei and hence ;;}(prJ(A»"2.;;}

(e) in Ef)Ei for some eEC(Ef)Ei) by Prop. 2.3. IndEEd, ;;}(A)"2.;;}
J J

(ci(e» in Ef)Ei, where ci: EBEi---+Ef)Ei is the canonical injection: For
I J I

each nEN there exists anEA such that [-prJ(an),prJ(an)]k:[ -n-1e,
n-1e]. Take anEA such that an~an, a. Then [-an, an] k [-n-1ci(e),
n-1ci(e)].

3. Order-bounded sets and intrinsic structures.
In this section, we introduce a category OBoV of bomological vector

spaces generated by order-bounded sets and investigate the images of
OBoV under the functors T and K. It tums out that a subcategory of
OBoV is isomorphic to the category RU of relative uniform convergence
spaces.

3.1. PROPOSITION: Let E be an ordered vector space and (R,E (or simply
"lJ)= {Bk:E : BeL: bc([ai, bi]), ai, biEE, nEN}, where bc([a, b]) is

;=1

the balanced convex hull of [a, b]. Then(E, (R,E) is a convex bornological
vector space. (We will refer to (E, (R,E) as an order bound bornological
vector space. )

Proof. Obviously, the family (R,E is a bomology on E and stable under.
vector addition and homothetic transformation. Let BElJE. Then Bk: L:

i=l.
bc([ai, bi]) for some ai, biEE, nEN, and hence bc(B) k:bc (L: bc ([ai,

i=1. .
bi]» = L: bc[ai, bi]. Thus lJE is stable under the formation of balanced

i=1

convex hulls.

REMARK. lJE is the finest convex vector bomology on E for which
every order-bounded subset of E is bounded.

3. 2. DEFINITION: Let E and F be ordered vec10r paces. A linear map
f : (E, (R,)---+(F, lJ) is called o-bounded if it maps every order-bounded
subset of E into an orper-bounded subset of F.

The category OBoV is formed by all order bound bomological vector
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spaces and all o-bounded linear maps.

PROPOSITION: OBoV is a subcategory of BoV.

3. 3. Now, we show that the objects in T(OBoV) are the order
bound locally convex spaces, which have been studied in ordered
topological vector spaces. We recall that the order bound topology Wb is
the finest locally convex topology on E for which every order-bounded
subset of E is hounded and (E, Wb) is homological.

PROPOSITION: For an ordered vector space E, T(E, £) is the urder
bound locally convex space (E, Wb).

Proof. Observe that co ( n_ C}9 B) is a neighhorhood filter base at 0 in
BE£

T(E, £). Thus for every [a, b] in E, C29[a, b] 2co (n_ C)\l B) and hence
BE£

[a, b] is bounded in the locally convex space T(E, £). Therefore 1 :
(E, wb)--tT(E, £) is continuous. On the other hand, 1: (E, £)--t
B (E, lih) is bounded, since every order-hounded suhset of E is hounded
in B(E, Wb). Thus T(l) =1 : T(E, £)--tTB(E, Wb) = (E, Wb) is contin-
uous.

3.4 Let E he an ordered vector space with E=C-C. Then the order
bound homology £ is generated by the family {[-a, aJ : aEC}. M-T.
Akkar [lJ introduced this notion, called "order homology" in an
ordered vector space with a generating positive cone, and investigated
this bomology, in particular, on order completion and homological
completion.

3.5. Let OBove be the subcategory of OBoV generated hy ordered
vector spaces with a generating positive cone. Indeed, this category
OBove is isomorphic to the category RU.

LEMMA: Let E be an ordered vector space with E=C -C. Then for a
subset B of E, B is order-bounded if and only if it is bounded in

(E,r), i.e. fJtB~O.

Proof. B is bounded in (E, r) ~fJtB-:O~fJtB2.1(a)=fJt[-a, a]
for some aEC, ~Bka[-a,a]=[-aa,aa] for some aER, where fJt
is the neighborhood filter at 0 in R.

THEOREM: RU and OBoVe are isomorphic categories

Proof. Observe that by Lemma for an ordered vector space E with
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E=C -C, B(E, r) = (E, £), where B : CvV--'>BoV is the von-Neumann
functor. Then the restriction B: RU--'>OBoVC of B is a functor.
Indeed, the functor B is full and faithful, and the associated object
function B : Ob (RU) --'>Ob (OBoVC) is a bijection. B is full: Let
f: B(E,r)=(E,£E)--'>(F,£F)=B(F, r) be a bounded linear map. Then
for each aECE fUh(a» f(fJt[-a, a]=fJtf[-a, a]2fJt[ -b, b]=
;}F(b) for some bECFsince fe-a, a]E£F' and hencef(;}E(a»~O
in(F, r). Therefore f: (E, r) --'> (F, r) is continuous and B(f)-f.
Obviously, B is faithful. Moreover, B: Ob(RU)--'>Ob(OBoVC) is a
bijection: By the above observation, B is surjective. Let B(E, r)=
(E, £E) = (F, £F) =B(F, r). Then for each aECE, ~E(a)=fJt[ -a, a]=
fJt[ -b, b]=;}p(b) for some bECF, since [-a, a] E£E=£F'

REMARK: In fact, (E, r)=K(E, £), since ;}(a)=fJt[ -a, a] for each
aEC. Let K be the restriction of K to OBoVC. Then BoK=l and
KoB=l.
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