ON ANALYTIC SPECTRAL RESOLVENTS

JAE CHUL RHO, TAE GEUN CHO, HYUNG KOO CHA

Introduction A spectral resolvent E maps an open set in the complex plane to an invariant subspace of a linear operator T in a Banach space. We consider E whose range is contained in the class of all analytically invariant subspaces of T and we call E an analytic spectral resolvent. Obviously an analytic spectral resolvent is a spectral resolvent but the converse is not true in general. In this paper we will show that if T has two-analytic spectral resolvent then the dual operator T^* has also a two-analytic spectral resolvent and we will give some reasonable dualities for an operator with an analytic spectral resolvent.

Throughout this paper, T is an element of B(X), the Banach algebra of bounded linear operators acting on the Complex Banach space X. Let $\sigma(T)$ denote the spectrum of T, $\rho(T)$ the resolvent set of T, $R_{\lambda}(T)$ the resolvent operator and $\sigma(x, T)$ the local spectrum of T at $x \in X$. We write X^* for the dual space of X. For a set S, S^c is the complement of S, \overline{S} is the closure of S. Cov(S) stands for the family of all finite open covers of S, Y^{\perp} is the annihilator of Y in Y^* . \mathcal{U} denotes the collection of all open subsets of \mathbb{C} . And $\mathrm{Inv}(T)$, Ana. $\mathrm{inv}(T)$ denote the class of all closed invariant subspaces, and analytically invariant subspaces of T respectively.

If T has the single valued extension property (SVEP), then we write

$$X_T(S) = \{x \in X : \sigma(x, T) \subset S\} \text{ for } S \subset \mathbb{C}.$$

1. DEFINITION. An invariant subspace Y of T is called analytically invariant if, for each X-valued analytic function f defined on a region $D \subset \mathbb{C}$ such that $(\lambda - T) f(\lambda) \in Y$ for $\lambda \in D$, $f(\lambda) \in Y$ for $\lambda \in D$.

For $Y \in Ana$, inv(T), the following hold:

$$\sigma(T|Y) \subset \sigma(T), \ \sigma(T) = \sigma(T|Y) \cup \sigma(T/Y)$$

([8], Corollary 1.4, Proposition 1.7), where $T \mid Y$, T/Y are the re-

This research is supported by Korea MOE research grant in 1984. Received October 5, 1984

striction and coinduced operator on the quotient space X/Y respectively.

- 2. Definition. E is said to be analytic spectral resolvent of T if
 - (i) $E: \mathcal{U} \rightarrow Ana$. inv(T)
 - (ii) $E(\phi) = \{0\}$
 - (iii) for $\{G_i\}_{i=1}^n \in \text{Cov}[\sigma(T)], X = \sum_{i=1}^n E(G_i) (n \in N), \text{ and}$
 - (iv) $\sigma(T|E(G)) \subset \overline{G}$ for each $G \in \mathcal{U}$.

When n=2, we call E a two-analytic spectral resolvent for T. In this definition, if we replace Ana. inv(T) by Inv(T) then E is a spectral resolvent for T.

For example, let T be decomposable. Define $E(G) = X_T(\overline{G})$ $(G \in \mathcal{U})$, then $X_T(\overline{G})$ is spectral maximal, thus analytically invariant under T. And for every $\{G_i\} \in \text{Cov}[\sigma(T)]$, $\{(G_i, X_T(\overline{G}_i)\}$ is a spectral decomposition of X by T. Therefore $E: \mathcal{U} \to Ana$. inv(T) is an analytic spectral resolvent for T.

3. Theorem. Let T have an analytic spectral resolvent E. Then T has the SVEP.

Proof. Let $f: D \rightarrow X$ be analytic for every component of an open set $D \subset \mathbb{C}$ verifying the identify

$$(\lambda - T) f(\lambda) = 0$$
 for any $\lambda \in D$.

Without loss of generality, we may assume that D is connected. Suppose that f is nonzero on D, then $D \subseteq \sigma(T | E(G)) \subseteq \overline{G}$ for any $G \in \mathcal{U}$. This follows from Theorem 1.8, [8]. Hence

$$D \subset \cap \{\overline{G} : G \in \mathcal{U}\} = \emptyset,$$

which is a contradiction, thus f=0 on D.

It is known that if T has a spectral resolvent then T is decomposable ([10], Theorem 11). In the proof of this theorem, we see that if, T has a two-spectral resolvent then T is decomposable. Just the same calculation as this or by [5], Lemma 17 we have the following theorem.

4. THEOREM. Let T have a two analytic spectral resolvent, then T

is decomposable.

The Hahn-Banach theorem leads to the following Lemma.

- 5. LEMMA. If M is a linear subspace of a normed linear space X, then every continuous linear form g on M may be extended to a continuous linear form f on X such that ||f|| = ||g||.
- 6. Theorem. Let T have a two-analytic spectral resolvent E. Then T^* has also a two-analytic spectral resolvent E^* .

Proof. Let us define $E^*: \mathcal{U} \to X^*$ by $E^*(G) = E(\mathbb{C} \setminus \overline{G})^{\perp}$ for any $G \in \mathbb{C}$, and we prove that E^* is an two-analytic spectral resolvent of T^* .

Since E(G) = X provided $\sigma(T) \subseteq G$, $E^*(\phi) = E(C)^{\perp} = X^{\perp} = \{0\}$. And $E^*(G)$ is invariant under T^* for each $G \in \mathcal{U}$; for, if

$$x \in E(\overline{G}^c), f \in E(\overline{G}^c)^{\perp}$$

 $0 = f(Tx) = (T^*f)x,$

then

thus $T^*f \in E^*(G)$, that is, $T^*E^*(G) \subset E^*(G)$.

From the identification $[X/E(G)]^* \equiv E(G)^{\perp}$ for any G, we have

$$(6.1) \qquad \sigma(T^*|E^*(G)) = \sigma\{\lceil T/E(\overline{G}^c)\rceil^*\} = \sigma(T/E(\overline{G}^c)) \subset \overline{G},$$

the last inclusion holds since $E(\overline{G}')$ is analytically invariant under T ([5], p. 60, Theorem 10).

Next, we claim that $X^*=E^*(G_1)+E^*(G_2)$ for any $\{G_1,G_2\}\in \text{Cov}$ $\sigma(T^*)$. Since $\sigma(T)=\sigma(T^*)$, $\sigma(T)\subseteq G_1\cup G_2$ so we have $G_1{}^c\cap G_2{}^c\subseteq \rho(T)$. Hence

$$X_T(G_1^c \cap G_2^c) = X_T(G_1^c \cap G_2^c \cap \sigma(T)) = X_T(\phi) = \{0\}.$$

.: $X_T(G_1^c) \cap X_T(G_2^c) = \{0\}.$

A simple computation shows that $E(G) \subseteq X_T(\overline{G})$ for any $G \in \mathcal{U}$, so we have $E(\overline{G}^c) \subset X_T(\overline{G}^c) = X_T(\overline{G}^c)$. Therefore, $E(\overline{G}_1^c) \cap E(\overline{G}_2^c) = \{0\}$ and $E(G_1^c) + E(G_2^c)$ is a direct sum and

$$E(\overline{G}_1^c) \oplus E(\overline{G}_2^c) \subset X_T(G_1^c \cup G_2^c \subset) X.$$

Hence $E(\overline{G}_1^c) \oplus E(\overline{G}_2^c) = Y$ can be considered as a closed linear subspace of X.

Now, let $f \in X^*$ be arbitrary and define \tilde{g} by

(6.2)
$$\tilde{g}(x) = f(x_2),$$

where $x \in Y$ and x_2 is the component of x in $E(\overline{G}_2^c)$. Then \tilde{g} is the well defined continuous linear form on Y, by Lemma 5, \tilde{g} can be extended to the continuous linear form $g \in X^*$ such that $\|\tilde{g}\| = \|g\|$.

For any $x \in E(\overline{G}_1^c)$, by (6.2),

$$g(x) = \tilde{g}(x) = f(0) = 0.$$

It follows that $g \in E(\overline{G}_1)^{\perp}$.

We put h=f-g or f=g+h $(h\in X^*)$. For any $y\in E(\overline{G}_2^*)$,

$$h(y) = f(y) - g(y) = f(y) - \tilde{g}(y) = f(y) - f(y) = 0$$
 by (6.2),

whence $h \in E(\overline{G}_2^c)^{\perp} = E^*(G_2)$, and we have

$$f=g+h\in E^*(G_1)+E^*(G_2)$$
 for any $f\in X^*$.
i. e. $X^*=E^*(G_1)+E^*(G_2)$.

It remains to prove that $E^*(G)$ is analytically invariant under T^* for each $G \subseteq \mathcal{U}$: Let $f^* : D \to X^*$ be analytic on an open set $\phi \neq D \subset \mathbb{C}$ such that

$$(\lambda - T^*)f^*(\lambda) \in E^*(G)$$
 for any $\lambda \in D$.

Without loss of generality we may assume that D is connected. We denote $\langle x, f \rangle = f(x)$ in the sequel.

(a) Assume $D \subset \overline{G}$.

Since $\sigma[T|E(\overline{G}^{\epsilon})] \subset G^{\epsilon}$ and D is open,

$$D \subseteq G \subseteq \rho[T \mid E(\overline{G}^c)].$$

For any $x \in E(\overline{G}^c)$ and any $\lambda \in D$, $R_{\lambda}(T|E(\overline{G}^c))x$ is defined and we have

$$\langle x, f^*(\lambda) \rangle = \langle (\lambda - T) R_{\lambda}(T | E(\overline{G}^c)) x, f^*(\lambda) \rangle$$

= $\langle R_{\lambda}(T | E(\overline{G}^c)) x, (\lambda - T^*) f^*(\lambda) \rangle = 0$

since $R_{\lambda}(T|E(\overline{G}^{\epsilon}))x \in E(\overline{G}^{\epsilon})$ and $(\lambda - T)^*f^*(\lambda) \in E^*(G)$. Therefore $f^*(\lambda) \in E(\overline{G}^{\epsilon})^{\perp} = E^*(G)$ for any $\lambda \in D$.

(b) Assume $D \not\subset \overline{G}$.

Since $\sigma[T^*|E^*(G)] \subset \overline{G}(G \in \mathcal{U})$, for any $\lambda \in D \setminus \overline{G}$ the resolvent operator $R_{\lambda}(T^*|E^*(G))$ is defined and

$$(\lambda - T^*)R_{\lambda}(T^*|E^*(G)) = I^*|E^*(G).$$

Thus

$$(\lambda - T^*) \left\{ f^*(\lambda) - R_{\lambda} \left[T^* | E^*(G) \right] (\lambda - T^*) f^*(\lambda) \right\} = 0.$$

Since T is decomposable, so is T^* ([7]), whence T^* has the SVEP. It follows that

$$f^*(\lambda) = R_{\lambda} [T^*|E^*(G)](\lambda - T^*) f^*(\lambda) \in E^*(G)$$

for any $\lambda \in D \setminus \overline{G}$. Hence $f^*(\lambda) \in E^*(G)$ for any $\lambda \in D$ by analytic continuation. This completes the proof.

For each $G \in \mathcal{U}$, E(G) is analytically invariant under T, thus we have

(6.3)
$$\sigma(T|E(G)) \subset \overline{G} \cap \sigma(T), \ \sigma(T/E(G)) \in G^c \cap \sigma(T)$$

and

$$\sigma(T|E(G)) \cup \sigma(T/E(G)) = \sigma(T).$$

For the duality we have a following

7. COROLLARY. Let T have an analytic resolvent E. Then $\sigma(T^*|E^*(G)) \subset \overline{G} \cap \sigma(T^*)$, $\sigma(T^*/E^*(G)) \subset G^c \cap \sigma(T^*)$

and

$$\sigma(T^*|E^*(G)) \cup \sigma(T^*/E^*(G)) = \sigma(T^*), \quad (G \in \mathcal{U}).$$

8. COROLLARY. Let X be the reflexive Banach space. Then with the same definition of E^* as in Theorem 6, $E^{**}=(E^*)^*$ is the two-analytic spectral resolvent of T^{**} and $E=E^{**}$ on \mathcal{U} .

Proof. Put $F(G) = E^*(G) = [E(\overline{G}^c)]^{\perp}$, $G \in \mathcal{U}$. Then $F^* : \mathcal{U} \to X^{**}$ defined by $F^*(G) = F(\overline{G}^c)^{\perp}$ is the two-analytic spectral resolvent of $T^{**}(\equiv T)$ by Theorem 6. And

$$F^*(G) = E(G)^{\perp \perp} = E(G)$$

i. e. $E^{**}(G) = E(G)$ for $G \in \mathcal{U}$.

The duality for the inclusion $E(G) \subset X_T(\overline{G})$ is also valid: $E^*(G) \in X_{T^*}^*(\overline{G})$, $G \in \mathcal{U}$.

For, let $x^* \in E^*(G)$ then, since $E^*(G) \in \text{Ana.}$ inv (T^*)

$$\sigma(x^*, T^*) = \sigma[x^* | (T^* | E^*(G))] \subset \sigma(T^* | E^*(G)) \subset \overline{G}.$$

$$x^* \in X_{T^*}^*(\overline{G}) \text{ for any } x^* \in E^*(G).$$

Thus

We now discuss conditions for which the 'union $\sigma(T|E(G)) \cup \sigma(T/E(G)) = \sigma(T)$ is disjoint. For this purpose we use the following definition: For an operator T with disconnected spectrum, if there is an open set G with the following properties;

$$\sigma(T) \not\subset G, G \cap \sigma(T) \neq \phi \text{ and } \partial G \subset \rho(T),$$

where ∂G is the boundary of G, then we says that G disconnects the spectrum $\sigma(T)$.

9. Proposition. Let E be an analytic spectral resolvent for T. If $G \in \mathcal{U}$ disconnects the spectrum $\sigma(T)$, then both $\sigma(T|E(G))$ and $\sigma(T|E(G))$ are separate parts of $\sigma(T)$.

Proof. It is enough to show that

$$\sigma(T|E(G)) = \overline{G} \cap \sigma(T), \ \sigma(T/E(G)) = G^c \cap \sigma(T).$$

These follow from the followings;

$$\sigma(T) = \sigma(T | E(G)) \cup \sigma(T/E(G)) \subseteq [\overline{G} \cap \sigma(T)] \cup [G^c \cap \sigma(T)] = \sigma(T),$$

i.e. $\sigma(T) = [\overline{G} \cap \sigma(T)] \cup [G^c \cap \sigma(T)] = \sigma(T | E(G)) \cup \sigma(T/E(G)).$

And
$$\sigma(T|E(G)) \cap \sigma(T/E(G)) \subset \sigma(T) \cap \overline{G} \cap G^c = \sigma(T) \cap \partial G = \phi$$
.

It follows that $\sigma(T|E(G)) = \overline{G} \cap \sigma(T)$, $\sigma(T/E(G)) = G^c \cap \sigma(T)$, and $\sigma(T)$ is the disjoint union of these two sets.

10. COROLLARY. Under the same notation as in the Theorem 6, we have

$$\sigma(T^*|E^*(G)) = \overline{G} \cap \sigma(T^*),$$

$$\sigma(T^*/E^*(G)) = G^{\sigma} \cap \sigma(T^*),$$

where $G \in \mathcal{U}$ disconnects the spectrum $\sigma(T^*) = \sigma(T)$.

11. COROLLARY. Under the same conditions as the proposition 9, there are bounded open sets G_1 and G_2 such that

$$E(G_1) \oplus E(G_2) = X$$
,
 $\sigma(T|E(G_1)) \cup \sigma(T|E(G_2) = \sigma(T)$, the union is disjoint.

Proof. By the proposition 9, both $\sigma(T|E(G))$ and $\sigma(T/E(G))$ are bounded closed disjoint subsets of $\sigma(T)$ provided G disconnects $\sigma(T)$. Thus there are bounded disjoint open sets G_1, G_2 in C such that

$$\sigma(T|E(G)) \subseteq G_1$$
, $\sigma(T/E(G)) \subseteq G_2$ and $\partial G_i \subseteq \rho(T)$ $(i=1,2)$.

Thus

$$\{G_1, G_i\} \in \text{Cov } \sigma(T) \text{ and } E(G_1) + E(G_2) = X.$$

The condidition $\partial G_i \subset \rho(T)$ implies that

$$E(G_i) = X_T(G_i) = X_T(\overline{G}_i)$$
 ([10], Proposition 15).

Therefore

$$E(G_1) \cap E(G_2) = X_T(G_1 \cap G_2) = X_T(\phi) = \{0\},\ E(G_1) \oplus E(G_2) = X.$$

Consequently $\sigma(T) = \sigma(T|E(G_1)) \cup \sigma(T|E(G_2))$. We see that the union is disjoint, this follows

from the fact the $\sigma(T|E(G_i)) \subset \overline{G}_i \cap \sigma(T) = G_i \cap \sigma(T)$.

12. LEMMA. (i) [[8], Theorem 1.2] Let Y be analytically invariant under T, and suppose that for each $x \in X$, we have

$$\sigma(\hat{X}, T/Y) = \overline{\sigma(x, T) \setminus \sigma(T|Y)},$$

where \hat{x} is the coset of x in X/Y. Then Y is a spectral maximal space of T.

- (ii) [[6], Theorem 3] The following assertions are equivalent:
 - (1) T is strongly decomposable;
 - (2) (a) T has the SVEP and $X_T(F)$ is closed for every closed $F \subseteq \mathbb{C}$,
 - (b) for every spectral maximal space Y of T and any $x \in X$, $\sigma(\hat{x}, T/Y) = \overline{\sigma(x, T) \setminus \sigma(T|Y)}, \ \hat{x} = x + Y$,
- (c) for every spectral maximal space Y of T and any open $G \subseteq \mathbb{C}$,

 $G \cap \sigma(T \mid Y) \neq \phi$ implies that $X_T[\overline{G} \cap \sigma(T \mid Y)] \neq \{0\}$.

(iii) [[1], (1.1)] Let Y and Z be invariant under T, if $Y \subset Z$ then

$$(T|Z) | Y = T| Y$$

 $(T|Z) / Y = (T/Y) | Z/Y.$

From Lemma 12, (i) and (ii), we have the following

13. COROLLARY. Let $E: \mathcal{U} \rightarrow Ana$. inv(T) be an analytic spectral resolvent for T. Suppose that for every analytically invariant space Y

of T the conditions

(*)
$$\sigma(\hat{x}, T/Y) = \overline{\sigma(x, T) \setminus \sigma(T|Y)}$$
,

and for any $G \subset \mathbb{C}$, $G \cap \sigma(T | Y) \neq \phi$ implies that

$$X_T[\overline{G} \cap \sigma(T \mid Y)] = \{0\},$$

then T(G) is decomposable for $G \in U$.

Proof. Since T is decomposable, T has the SVEP and $X_T(F)$ is closed for any closed $F \subset \mathbb{C}$. Every spectral maximal space of T is analytically invariant under T. Therefore, by Lemma 12, (ii), T is strongly decomposable. And for any $G \in \mathcal{U}$ verifies the condition (*), E(G) is spectral maximal by the Lemma 12, (i). Thus $T \mid E(G)$ is decomposable.

We notice that a strongly decomposable operator is decomposable, but the converse remains open.

14. THEOREM. Let $E: \mathcal{U} \to Ana$. inv(T) be an analytic spectral resolvent for T, let T|E(G) be decomposable for each $G \in \mathcal{U}$. put $\overline{TE(G)} = Y(G)$, $\widetilde{Y}(G) = E(G)/Y(G)$ and $\widetilde{T} = T/Y(G)$.

Then $\tilde{Y}(G)$ is analytically invariant under \tilde{T} ; if Y(G) satisfies the condition (*), then

(14.1)
$$\sigma(\tilde{T} | \tilde{Y}(G)) \subset \overline{G} \cap \sigma(\tilde{T}).$$

Proof. First, we claim that

$$\sigma[{T|E(G)}/{Y(G)}] \subset \overline{G} \cap \sigma(T/Y(G)).$$

Observe that since $Y(G) = \overline{TE(G)}$ is spectral maximal of T, Y(G) is also spectral maximal of T|E(G), this follows from [2] Proposition 3.2, (1). And since T|E(G) is decomposable, we have

(14. 2)
$$\sigma[\{T|E(G)\}/Y(G)] = \overline{\sigma(T|E(G))} \setminus \sigma[\{T|E(G)\}|Y(G)]$$
$$= \overline{\sigma(T|E(G))} \setminus \sigma(T|Y(G)).$$

E(G) is analytically invariant under T implies that Y(G) is analytically invariant under T [8], Proposition 1.17, hence

$$\sigma(T) = \sigma(T|Y(G)) \cup \sigma(T/Y(G)).$$

Thus, by (14.2), we have

$$\sigma[\{T|E(G)\}/Y(G)] \subset \overline{G} \cap \sigma(T) \setminus [\sigma(T) \setminus \sigma(T/Y(G))]$$

$$= \overline{G} \cap \sigma(T/Y(G)).$$

In general, $\{T|E(G)\}/Y(G) = T/Y(G)|E(G)/Y(G)$ holds by Lemma 12, (iii). Hence we have

$$\sigma[T/Y(G) \mid E(G)/Y(G)] \subset \overline{G} \cup \sigma(T/Y(G))$$
$$\therefore \sigma(\widetilde{T} \mid \widetilde{Y}(G)) \subset \overline{G} \cup \sigma(\widetilde{T}).$$

E(G) is analytically invariant under T implies that $\tilde{Y}(G)$ is analytically invariant under $\tilde{T} = T/E(G)$, this follows from [8], Proposition 1.13.

Without the assumptions that T|E(G) is decomposable and Y(G) is spectral maximal, the dual form of (14.1) is following:

15. THEOREM. Let $E: \mathcal{U} \to Ana$. inv (T) be an analytic spectral resolvent for T. Under the same notations as in Theorem 14,

$$\sigma(\tilde{T}^* | \tilde{Y}(G)^{\perp}) \subset G^c \cap \sigma(\tilde{T}) \ (G \in \mathcal{U}),$$

where $\tilde{T}^* \in B([\hat{X}(G)]^*)$, $[\hat{X}(G)]^*$ the dual space of $\hat{X}(G) = X/Y(G)$.

Proof. Since $\sigma(T^*|E(G)^{\perp}) = (T/E(G))$ and $[T/Y(G)]^*|\tilde{Y}(G)^{\perp}$ is unitarily equivalent to an operator $T^*|E(G)^{\perp}$, this follows from [6], Lemma 5, we have

$$\sigma(\tilde{T}^*|\tilde{Y}(G)^{\perp}) = \sigma(T^*|E(G)^{\perp}) = \sigma(T/E(G)).$$

Therefore we have

(15.1)
$$\sigma(\tilde{T}^* | \tilde{Y}(G)^{\perp} \subset G^{\mathbb{C}} \cap \sigma(T).$$

On the other hand $\tilde{Y}(G)$ being analytically invariant under \tilde{T} ,

$$\sigma(\widetilde{T} \mid \widetilde{Y}(G)) \cup \sigma(\widetilde{T} / \widetilde{Y}(G)) = \sigma(\widetilde{T}).$$

Put $\hat{X}(G) = X/Y(G)$, then $\tilde{Y}(G)$ is a closed linear subspace of $\hat{X}(G)$ for the quotient norm. Moreover, since $\tilde{T} \in B(\hat{X}(G))$ and $\tilde{Y}(G)^{\perp} \equiv [\hat{X}(G)/\tilde{Y}(G)]^*$ we have

(15. 2)
$$\sigma(\tilde{T}^* | \tilde{Y}(G)^{\perp}) = \sigma[(\tilde{T}/\tilde{Y}(G))^*] = \sigma(\tilde{T}/\tilde{Y}(G)).$$

It follows that

(15. 3)
$$\sigma(\tilde{T}^* | \tilde{Y}(G)^{\perp}) \subset \sigma(\tilde{T}).$$

From (15.1) and (15.3), we have

$$\sigma(\widetilde{T}^* | \widetilde{Y}(G)^{\perp}) \subset G^{\mathcal{C}} \cap \sigma(\widetilde{T}).$$

 $Y(G) = \overline{TE(G)}$ being analytically invariant under T, obviously $\sigma(\tilde{T}) \subset \sigma(T)$.

By the same calculation as in the proof of proposition 9, we have a following corollary:

16. COROLLARY. Under the same assumptions and notations as in Theorem 14, if G disconnects the spectrum $\sigma(\tilde{T})$, then both $\sigma(\tilde{T} | \tilde{Y}(G))$ and $\sigma(\tilde{T}/\tilde{Y}(G))$ are separate parts of $\sigma(\tilde{T})$; $\sigma(\tilde{T})$ is the disjoint union of these separate parts.

REMARK. Here we see that \tilde{Y} is not an analytic spectral resolvent for \tilde{T} , but it plays similar role as E at least on the properties (6.3) in this note.

If T has a spectral resolvent E and G is open, then

$$\overline{G \cap \sigma(T)} \subset \sigma(T|E(G)) \subset \overline{G}$$
 ([10], Proposition16).

If E is an analytic spectral resolvent, we obtain the same inclusion relation as the above through much easier calculation: If E(G) is analytic invariant, then

$$\sigma(T|E(G))\supset \sigma(T)\setminus \sigma(T/E(G))\supset \sigma(T)\setminus G^c\cap \sigma(T)=G\cap \sigma(T),$$

thus

$$\overline{G \cap \sigma(T)} \subset \sigma(T|E(G)) \subset \overline{G} \cap \sigma(T).$$

17. COROLLARY. Under the same assumption as in Theorem 15, we have

$$\sigma(\widetilde{T}) \cap G \subseteq \sigma(\widetilde{T} \mid \widetilde{Y}(G)).$$

This follows from Theorem 15 and the same computation as the above. And if Y(G) is spectral maximal, T|E(G) is decomposable then, by Theorem 14,

$$\overline{\sigma(\tilde{T})\cap G} \subset \sigma(\tilde{T} \mid \tilde{Y}(G)) \subset \overline{G} \cap \sigma(\tilde{T}).$$

References

1. C. Apostol, Some properties of spectral maximal spaces and decomposable

- operators, Rev. Roum. Math. Pures et Appl. (1967), Tome XII, No. 5, 607-610.
- 2. C. Apostol, Spectral decompositions and functional calculus, Rev. Roum. Math. Pures et Appl., Tome XIII, 10 (1968), 1481-1528.
- I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, NY, 1968.
- 4. N. Dunford. J.T. Schwartz. *Linear operators partI*, II, III, Wiley Interscience, NY (1963, 1971).
- I. Erdelyi, Spectral resolvents, Research notes in Mathematics, No. 38 Pitman Advanced Pub. Program. San Francisco, London (1979), 51-70.
- 6. I. Erdelyi and Wang Shengwang, On the strongly decomposable operators, Pacific J. Math., 110, (1984), 287-296.
- S. Frunza, A duality theorem for decomposable operators, Rev. Roum. Math. Pures et Appl., Tome XVI, 7 (1971), 1055-1058.
- 8. R. Lange, Analytically decomposable operators, Trans. Amer. Math. Soc., 244, (1978), 225-240.
- 9. M. Radjabalipour, Equivalence of decomposable and 2-decomposable operators, Pacific J. Math. Vol. 77, (1978), 243-247.
- G. Shulberg, Spectral resolvents and decomposable operators, Research notes in Mathematics, No. 38, Pitman Advanced Pub. Program, San Francisco, London (1979), 71-80.
- 11. F.H. Vasilescu, Residually decomposable operators in Banach spaces, Tohoku Math. J. 21 (1969), 520-522.

Sogang University Seoul 121, Korea