
J. Korean Math. Soc. 22 (1985), No. 1, pp. 75'"'-'85

ON ANALYTIC SPECTRAL RESOLVENTS

75

]AE CHuL RHo, TAE GEUN CHo, HYUNG Koo CHA

Introduction A spectral resolvent E maps an open set in the com­
plex plane to an invariant subspace of a linear operator T in a Banach
space. We consider E whose range is contained in the class of all an­
alytically invariant subspaces of T and we call E an analytic spectral
resolvent. Obviously an analytic spectral resolvent is a spectral resolvent
but the converse is not true in general. In this paper we will show
that if T has two-analytic spectral resolvent then the dual operator T*
has also a two-analytic spectral resolvent and we will give some reaso­
nable dualities for an operator with an analytic spectral resolvent.

Throughout this paper, T is an element of B (X), the Banach alg­
ebra of bounded linear operators acting on the Complex Banach space
X. Let q (T) denote the spectrum of T, p (T) the resolvent set of
T, R;,(T) the resolvent operator and (J(x, T) the local spectrum of Tat
xEX. We write X* for the dual space of X. For a set S, Se is the
complement of S, S is the closure of S. Cov (S) stands for the family
of all finite open covers of S, y.l is the annihilator of Y in Y*. 'IJ, de­
notes the collection of all open subsets of C. And Inv(T), Ana. inv(T)
denote the class of all closed invariant subspaces, and analytically
invariant subspaces of T respectively.

If T has the single valued extension property (SVEP), then we write

XT(S) = {xEX : (J(x, T) cS} for SeC.

1. DEFINITION. An invariant subspace Yof T is called analytically
invariant if, for each X-valued analytic function f defined on a region
DcC such that ()'-T)f(}..) E Y for ).ED, f(}..) E Y for ).ED.

For YEAna. inv(T), the following hold:

(J(TI Y) cq(T), (J(T) =(J(TI Y) U(J(T / Y)

([8J, Corollary 1. 4, Proposition 1. 7), where T I Y, T/ Y are the re-
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striction and coinduced operator on the quotient space XI Y respectively.

2. DEFINITION. E is said to be analytic spectral resolvent of T if

(i) E: fJt~Ana. inv (T)
(ii) E(g» = {O}

(iii) for {Gi}ni=l ECov[Il(T) J, X=i.E(Gi) (nEN), and
i=l

(iv) Il(TIE(G))cG for each GErzt.

When n=2, we call E a two-analytic spectral resolvent for T. In
this definition, if we replace Ana. inv (T) by Inv (T) then E is a sp­
ectral resolvent for T.

For example, let T be decomposable. Define E(G) =XT(G) (G EfJt) ,
then XT (G) is spectral maximal, thus analytically invariant under T.
And for every {Gi} ECov[Il(T)J, {(Gi,XT(Gi)} is a spectral decom­
position of X by T. Therefore E : fJt~Ana. inv(T) is an analytic
spectral resolvent for T.

3. THEOREM. Let T have an analytic spectral resolvent E. Then T
has the SVEP.

Proof. Let f : D~X be analytic for every component of an open set
DcC verifying the identify

(A-T)f(A)=O for any AED.

Without loss of generality, we may assume that D is connected. Sup­
pose that f is nonzero on D, then DCIl(TIE(G))cG for any GEfJt.
This follows from Theorem 1. 8, [8J. Hence

Dc n {G : GErzt} =g>,

which is a contradiction, thus f = 0 on D.

It is known that if T has a spectral resolvent then T is decompos­
able ([10J, Theorem 11). In the proof of this theorem, we see that
if, T has a two-spectral resolvent then T is decomposable. Just the
same calculation as this or by [5J, Lemma 17 we have the following
theorem.

4. THEOREM. Let T have a two analytic spectral resolvent, then T
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is decomposable.

The Hahn-Banach theorem leads to the following Lemma.

77

then

5. LEMMA. If M is a linear subspace of a normed linear space X,
then every continuous linear form g on M may be extended to a contin­
uous linear form f on X such that Ilfll=llgll.

6. THEOREM. Let T have a two-analytic spectral resolvent E. Then
T* has also a two-analytic spectral resolvent E*.

Proof. Let us define E* : 1L-X* by E*(G)=E(C\G)J. for any GE
C, and we prove that E* is an two-analytic spectral resolvent of T*.

Since E(G) =X provided aCT) cG, E* (ljJ) =E (C) J.=XJ.= {O}. And
E*(G) is invariant under T* for each GE1L; for, if

xEE(Gc), fEE(Gc)J.
O-f(Tx) = (T* f)x,

thus T*fEE*(G), that is, T*E*(G)cE*(G).
From the identification [X/E(G)J*=E(G)l. for any G, we have

(6.1) a(T* IE* (G» =a {[T/E(G') J*} =a(T/E(G'» cG,
the last inclusion holds since E (GC) is analytically invariant under T
([5J, p.60, Theorem 10).

Next, we claim that X*=E*(G1)+E*(G2) for any {Gh G2} ECov
a(T*). Since aCT) =a(T*), aCT) cG1 UG2 so we have G{ nG{C
peT). Hence

XT(G~ nG;) =XT(G~nG; naCT»~ =XT(ljJ) = {O}.
:. XT(G~) nXT(G;)= {O}.

A simple computation shows that E(G) ~XT(G) for any GE1L, so
we have E(GC

) cXT(GC
) =XT(GC

). Therefore, E(G~) nE(G;)= {a}
and E (G ~) +E (G;) is a direct sum and

E(G~)EBE(G;) CXT(G~ UG~c)X.

Hence E (G ~) EBE (G ~) = Y can be considered as a closed linear subspace
of X.

Now, let fEX* be arbitrary and define g by

(6.2) g(x) -f(X2) ,
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where xE Y and X2 is the component of x in E(G~). Then g is the
well defined continuous linear form on Y, hy Lemma 5, g can he ex­
tended to the continuous linear form gEX* such that IIgll=llgll.

For any xEE(G~), hy (6.2),

g(x) =g(x) f(O) =0.

It follows that gEE(G~)-l.

We put h f-g or f=g+h (hEX*). For any yEE(G~),

hey) fey) -g(y) fey) -g(y) fey) -fey) =0 hy (6.2),

whence hEE(G~)-l=E*(G2)' and we have

f=g+hEE*(G I )+E*(G2) for any fEX*.
i. e. X*=E*(G I ) +E*(G2).

It remains to prove that E* (G) is analytically invariant under T*
for each GE1t: Let f* : D~X* he analytic on an open set ifJ~DeC

such that

(J..-T*)f*(J..) EE*(G) for any J..ED.

Without loss of generality we may assume that D is connected. We
denote (x, f) f(x) in the sequel.

(a) Assume DeG.

Since o-[T\E(GC)]eG
c and D is open,

DeGep[TIE(GC)].

For any xEE(G
C
) and any J..ED, R;,(TIE(GC»x IS defined and we

have

(x, f* (J..»=( (J..- T)R;, (TIE(GC) )x, f* (J..) >
=(R;,(T\E(GC»x, (J..-T*)f*(J..»=O

since R;,(TjE(Gc)xEE(GC) and (J..-T)*f*(J..) EE*(G).
Therefore f*(J..) EE(GC)-l=E*(G) for any J..ED.

(h) Assume D<tG.

Since o-[T*IE*(G)]eG(GE1t), for any J..ED\G the resolvent operator
R;, (T* IE* (G» is defined and

(J..-T*)R;,(T* IE*(G» =1* IE*(G).
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(A- T*) {f* (A) - R,,[T* IE* (G) J(A- T*)f* CA)} =0.

Since T is decomposable, so is T* ([7J), whence T* has the SVEP.
It follows that

f*(A) =R,,[T* IE* (G) J(A- T*)f* (A) EE* (G)

for any AED\G. Hence f*(A) EE*(G) for any AED by analytic con­
tinuation. This completes the proof.

For each G E U, E (G) is analytically invariant under T, thus we
have

(6.3) 6(TIE(G»cGn6(T), 6(T/E(G»EGc n6(T)

and

6(TIE(G» U6(T/E(G»=6(T).

For the duality we have a following

7. COROLLARY. Let T have an analytic resolvent E. Then

6(T* IE* (G» cG n6(T*), 6(T* / E* (G» cGc n6(T*)

and

6(T*IE*(G» U6(T*/E*(G»=6(T*), (GEU).

8. COROLLARY. Let X be the reflexive Banach space. Then with the
same definition of E* as in Theorem 6, E**= (E*) * is the two-analytic
spectral resolvent of T** and E=E** on U.

Proof. Put F(G)=E*(G)=[E(GC)J-!-, GEU. Then F*: U-X**
defined by F*(G)=F(GC)J.. ·is the two-analytic spectral resolvent of
T**(-T) by Theorem 6. And

F*(G) =E(G)J..J..=E(G)
i. e. E** (G) =E(G) for GEU.

The duality for the inclusion E (G) C X T (G) is also valid: E* (G) E
X~.(G), GEU.

For, let x*EE*(G) then, since E*(G) EAna. inv (T*)

6(X*, T*) =6[X* I (T* IE* (G» Jc6(T* IE* (G» cG.

Thus x*EX~.(G) for any x*EE*(G).
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We now discuss conditions for which the 'union a (T lE (G)) Ua (T/
E(G))=a(T) is disjoint. For this purpose we use the following defi­
nition: For an operator T with disconnected spectrum, if there is an
open set G with the following properties;

a(T)et.G,Gna(T)~t/J and aGcp(T),

where aG is the boundary of G, then we says that G disconnects the
spectrum a (T) .

9. PROPOSITION. Let E be an analytic spectral resolvent for T. If
GEU disconnects the spectrulIt aCT), then both a(TIE(G)) and a(TI
E(G)) and a(T/E(G)) are separate parts of aCT).

Proof. It is enough to show that

a(TIE(G)) =c naCT), a(T/E(G)) =Gc naCT).

These follow from the followings;

aCT) =a(TIE(G)) UaCT/E(G)) ~ [c naCT)] U [Gc na(T)]=a(T),
i. e. a (T) = [C na (T)] U [Gc na(T) ] = a(T IE (G)) Ua (T/ E (G) ).

And a(TIE(G)) na(T/E(G))ca(T) nCnGc=a(T) naG=t/J.

It follows that a(TIE(G)) =C na(T),a(T/E(G)) =Gcna(T), and
a (T) is the disjoint union of these two sets.

10. COROLLARY. Under the same notation as in tM Theorem 6, we
have

a(T* IE*(G)) =C na(T*),
a(T* /E*(G)) =Gc na(T*),

where GEU disconnects the spectrum a(T*) =a(T).

11. COROLLARY. Under the same conditions as the proposition 9, th­
ere are bounded open sets G1 and Gz such that

E(G1)r(BE(Gz) =X,
a(T\E(G1)) Ua(TIE(Gz)=a(T), the union is disjoint.

Proof. By the proposition 9, both a(TIE(G)) and a(T/E(G)) are
bounded closed disjoint subsets of a (T) provided G disconnects a (T).
Thus there are bounded disjoint open sets GJ, Gz in C such that
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a(TjE(G»cGb a(TIE(G»cGz and
oGicp(T) (i=1,2).

Thus

{Gb G;} ECov aCT) and E(G1) +E(Gz) =X.

The condidition oG;cp(T) implies that

E(G;) =XT(G;) =XT(G;) ([10J, Proposition 15).

Therefore
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E(G1) nE(Gz) =XT(G1 nGz) =XT(r!» = {O},
E(G!) (1;)E(Gz) =X.

Consequently a(T)=a(TIE(G1» Ua(TIE(Gz». We see that the union
is disjoint, this follows
from the fact the a(TjE(G;»cG;na(T)=G;na(T).

12. LE!vIMA. (i) [[8J, Theorem 1. 2J Let Y be analytically in'variant
under T, and suppose that for each xEX, we have

a(X, T/Y)=a(x, T)\a(TI Y),

where .1: is the coset of x in XI Y. Then Y is a spectral maximal space
of T.

(ii) [[6J, Theorem, 3J The following assertions are equivalent:

(1) T is strongly decomposable;
(2) (a) T has the SVEP and XT(F) is closed for every closed FeC,
(b) for every spectral maximal space Y of T and any xEX,

a(x, TI Y) =a(x, T) \a(TI Y), x=x+ Y,
(c) for every spectral maximal space Y of T and any open GcC,

Gna(TI Y)~r!> implies that XT[Gna(TI Y)J~ to}.
(iii) [[1J, (1. 1) J Let Y and Z be invariant under T, if YcZ then

(TIZ) I Y= TI Y
(TIZ) I Y= (TI Y) IZI Y.

From Lemma 12, (i) and (ii), we have the following

13. COROLLARY. Let E : 1J~Ana. inv (T) be an analytic spectral re­
solvent for T. Suppose that for every analytically invariant space Y
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of T the conditions

(*) 0'(£, T/ Y) =0' (x, T) \a(TI Y),

and for any GcC, Gna(TI Y) ~p implies that

XT[Cna(TI Y)J~ to},
then TI (G) is decomposable for GEU.

Proof. Since T is decomposable, T has the SVEP and X T(F) is
closed for any closed FCC. Every spectral maximal space of T is an­
alytically invariant under T. Therefore, by Lemma 12, (ii) , T is
strongly decomposable. And for anyGEU verifi~ 'the condition (*),
E(G) is spectral maximal by the Lemma 12, (i). Thus TIE(G) is
decomposable.

We notice th8;t a strongly decomposable operator is decomposable,
but the converse remains open.

14. THEOREM. Let E : U~Ana. i~v(T) be an analytic spectral r~so­
lvent for T, let TIE(G) be decomposable for each GEU. put TE(G)
=Y(G), Y(G)=E(G)/Y(G) and T=T/Y(G).

Then Y(G) is analytically invariant under 1'; if Y(G) satisfies the
condition (*), then

(14.1) a(TI Y(G)) cC n0'(1').

Proof. First, we claim that

0'[ {TIE(G)} / Y(G)JcG na(T/ Y(G)).

Observe that since Y(G)=TE(G) is spectral maximal of T, Y(G) is
also spectral maximal of TIE (G) , this follows from [2J Proposition
3.2, (1). And since TIE(G) is decomposable, we have

(14.2) 0'[ {TIE(G)} / Y(G) J=a(TIE(G)) \0'[ {TIE(G)} I Y(G) J
=a(TIE(G))\a(TI Y(G)).

E(G) is analytically invariant under T implies that Y(G) is analy­
tically invariant under T [8J, Proposition 1.17, hence

aCT) =a(TI Y(G)) Ua(T/ Y(G)).

Thus, by (14. 2), we have
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q[ {TIE(G»} / Y(G)JeG nq(T) \[q(T) \q(T/ Y(G)J
=Gnq(T/Y(G».

In general, {TIE(G)}/Y(G)=T/Y(G)IE(G)/Y(G) holds by Lemma
12, (iii). Hence we have

q[T/ Y(G) IE(G)/Y(G)JeGUq(T/ Y(G»
:. q(TI Y(G»eGUq(T).

E(G) is analytically invariant under T-implies that Y(G) is analytically
invariant under T=T/E(G), this follows from [8J, Proposition 1.13.

Without the assumptions that TIE(G) is decomposable and Y(G) is
spectral maximal, the dual form of (14. 1) is following:

15. THEOREM. Let E : 1J-+Ana. inv (T) be an analytic spectral re­
solvent for T. Under the same notations as in Theorem 14,

q(T* I Y(G).L) eGc nq(T) (G E1J) ,

where T* EB([X(G) ]*), [X(G) ]* the dual space of X(G) =X/ Y(G).

Proof. Since q(T*IE(G).L)=(T/E(G» and [T/Y(G)]*I Y(G).L is
unitarily equivalent to an operator T* IE(G)\ this follows from [6J,
Lemma 5, we have

q(T* I Y(G).L) =q(T* IECG).L) =q(TIE(G».

Therefore we have

(15.1) q(T* I Y(G).LeGc nq(T).

On the other hand Y(G) being analytically invariant under T,

q(TI Y(G» Uq(T/Y(G»=q(T).

Put X(G) = XI Y (G) , then Y (G) is a closed linear subspace of X(G)
for the quotient norm. Moreover, since TEB(X(G» and Y(G).L==[X
(G)/Y(G)J* we have

(15.2) q(T* I Y(G).L) =q[(T /Y(G»*J=q(T /Y(G».

It follows that

(15.3) q(T* I Y(G).L) eq(T).

From (15. 1) and (15. 3), we have
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q(T* I Y(G)J.) cGc nq(T).

Y(G) = TE (G) being analytically invariant under T, obviously q (T)
cq(T).

By the same calculation as in the proof of proposition 9, we have a
following corollary:

16. CoROLLARY. Under the same assumptions and notations as in
Theorem 14, if G disconnects the spectrum q(T), then both q(TI Y(G»
andq(T/Y(G» are separate parts of q(T); q(T) is the disjoint union
of these separate parts.

REMARK. Here we see that Y is not an analytic spectral resolvent for
T, but it plays similar role as E at least on the properties (6.3) in
this note.

If T has a spectral resolvent E and G is open, then

G nq(T) cq(TIE(G» cG ([1OJ, Proposition16).

If E is an analytic spectral resolvent, we obtain the same inclusion
relation as the above through much easier calculation: If E(G) is an­
alytic invariant, then

q(TIE(G» ::Jq(T) \q (T/E (G» :::>q(T)\Gcnq(T) =G nq(T),

thus

Gnq(T) cq(TIE(G» cG nq(T).

17. COROLLARY. Under the same assumption as in Theorem 15, we
have

q(T) nGcq(T IY(G».

This follows from Theorem 15 and the same computation as the
above. And if Y(G) is spectral maximal, TIE(G) is decomposable
then, by Theorem 14,

q(T) nGcq(TI Y(G»cGnq(T).
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